题目:
已知一个长度为n的数组,预先按照升序排列,经由1到n次旋转后,得到输入数组,例如,原数组 nums = [0,1,2,4,5,6,7]
在变化后可能得到:
- 若旋转
4
次,则可以得到[4,5,6,7,0,1,2]
- 若旋转
7
次,则可以得到[0,1,2,4,5,6,7]
注意,数组 [a[0], a[1], a[2], ..., a[n-1]]
旋转一次 的结果为数组 [a[n-1], a[0], a[1], a[2], ..., a[n-2]]
给定一个元素互不相同的数组nums,它原来是一个升序排列的数组,并按上述情形进行了多次旋转,找出并返回数组中的最小元素。
题目:二分查找
一个不包含重复元素的升序数组在经过旋转之后,可以得到下面可视化的折线图:
其中横轴表示数组元素的下标,纵轴表示数组元素的值。图中标出了最小值的位置,是我们需要查找的目标。
考虑数组中的最后一个元素x::在最小值右侧的元素(不包括最后一个元素本身),它们的值一定都严格小于 x;而在最小值左侧的元素,它们的值一定都严格大于 x。因此可以通过二分查找的方法找出最小值。
在二分查找的每一步中,左边界为 low,右边界为 high,区间的中点为 pivot,最小值就在该区间内。将中轴元素 nums[pivot] 与右边界元素 nums[high] 进行比较,
可能会有以下的三种情况:
第一种情况是 nums[pivot]<nums[high]。如下图所示,这说明 nums[pivot] 是最小值右侧的元素,因此我们可以忽略二分查找区间的右半部分。
第二种情况是 nums[pivot]>nums[high]。如下图所示,这说明 nums[pivot] 是最小值左侧的元素,因此我们可以忽略二分查找区间的左半部分。
由于数组不包含重复元素,并且只要当前的区间长度不为 1,pivot 就不会与 high 重合;而如果当前的区间长度为 1,这说明我们已经可以结束二分查找了。因此不会存在 nums[pivot]=nums[high] 的情况。
当二分查找结束时,就得到了最小值所在的位置。
class Solution(object):
def findMin(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
low,high=0,len(nums)-1 #初始化两个指针low和high,分别指向数组的开始(0)和结束位置
while low<high:#当low指针小于high指针时继续循环
mid=low+(high-low)//2 #计算中间位置
if nums[mid]<nums[high]: #说明最小值在左半部分
high=mid #将右指针移动到中间位置
else: #说明最小值在右半部分
low=mid+1
return nums[low] #low == high,指向的就是最小值的位置
时间复杂度为: O(logn),其中 n 是数组 nums 的长度
空间复杂度:O(1)
源自力扣官方题解