机器学习基础 机器学习——绪论 什么是机器学习 机器学习的常用术语 机器学习的主要任务 机器学习——模型评估、选择与检验 为什么要有训练集与测试集 欠拟合和过拟合 偏差与方差 验证集与交叉验证 衡量回归的性能指标 准确度的陷阱与混淆矩阵 精准率与召回率 F1 Score ROC 曲线与 AUC sklearn 中的分类性能指标 广义线性模型 机器学习——线性回归 简单线性回归与多元线性回归 线性回归的正规方程解 衡量线性回归的性能指标 scikit-learn 线性回归实践-波斯顿房价预测 机器学习——逻辑回归 逻辑回归核心思想 逻辑回归的损失函数 梯度下降 动手实现逻辑回归-癌细胞精准识别 手写数字识别 机器学习——感知机 感知机-西瓜好坏自动识别 scikit-learn 感知机实践-癌细胞精准识别 机器学习——线性判别分析 线性判别分析-随机生成数的降维 scikit-learn 线性判别实践-随机生成数的降维 机器学习——多分类学习 OvO多分类策略 OvR 多分类策略 常用分类算法 机器学习——KNN 算法 实现 kNN 算法 红酒分类 机器学习——决策树 什么是决策时 信息熵与信息增益 使用 ID3 算法构建决策树 信息增益率 基尼系数 预剪枝与后剪枝 鸢尾花识别 机器学习——朴素贝叶斯 条件概率 贝叶斯公式 朴素贝叶斯分类算法流程 拉普拉斯平滑 新闻文本主题分类 机器学习——神经网络 神经网络基本概念 激活函数 反向传播算法 使用 pytorch 搭建神经网络识别手写数字 机器学习——支持向量机回归(SVM) 线性可支持向量机 线性支持向量机 非线性支持向量机 序列最小优化算法 支持向量回归 集成学习算法 机器学习——Adaboost Boosting Adaboost 算法 sklearn 中的 Adaboost 机器学习之随机森林算法 Bagging 随机森林算法流程 手写数字识别 常用聚类算法 机器学习—— k-means 距离度量 什么是质心 k-means 算法流程 sklearn 中的 k-learns 机器学习——DBSCAN DBSCAN 算法的基本概念 DBSCAN 算法流程 sklearn 中的 DBSCAN 机器学习——AGNES 距离的计算 AGNES 算法流程 红酒分类 机器学习——EM 算法 极大似然估计 实现 EM 算法的单词迭代过程 实现 EM 算法流的主循环 机器学习——高斯混合聚类 高斯混合聚类的核心思想 实现高斯混合聚类 图像分类 图像分割 机器学习——聚类性能评估指标 外部指标 内部指标 sklearn 中的聚类性能评估指标 降维算法 机器学习——PCA 维数灾难与降维 PCA 算法流程 sklearn 中的 PCA 机器学习——多维缩放 多维放缩 sklearn 中的多维放缩 机器学习—— 等度量映射 等度量映射 sklearn 中的等度量映射 机器学习——局部线性嵌入 局部线性嵌入 sklearn 中的局部线性嵌入