洛谷 P1429 平面最近点对(加强版) (分治法)

本文介绍了一种使用分治法解决二维平面上点对之间的最小距离问题的算法实现。通过将点集按x坐标排序并递归地分为左右两部分,分别计算左右两侧的最小距离,再检查跨越中线的点对距离,最终找到全局最小距离。

⭐分治法⭐
在这里插入图片描述

#include <iostream>
#include <cmath> 
#include <algorithm>
using namespace std;
const int N=2e5+10;
const int INF=0x3f3f3f3f;
int n;
double res;

struct node
{
	double x,y;
}v[N],vv[N];

void read()
{
	scanf("%d",&n);
	for(int i=1;i<=n;i++)
		scanf("%lf%lf",&v[i].x,&v[i].y);
}

bool cmp(node a,node b)	//注意排序 x、y都要排 
{
	if(a.x!=b.x)	return a.x<b.x;
	else	return a.y<b.y;
}

double dis(node a,node b)
{
	return sqrt((b.x-a.x)*(b.x-a.x)+(b.y-a.y)*(b.y-a.y));
}

double solve(node v[],int l,int r)	//分治法 
{
	int mid=(l+r)/2;
	int midval=v[mid].x;
	
	if(l==r)	return INF;	//一定要足够大 
	else if(r==l+1)	return dis(v[l],v[r]);
	
	double res=min(solve(v,l,mid),solve(v,mid+1,r));
		   //		左边部分		右边部分 

	//中间部分 
	int k=1;
	for(int i=l;i<r;i++)
	{
		if(((v[i].x-midval)<res)&&((v[i].x-midval)>-res))
			vv[k++]=v[i];
	}
	
	//中间部分的所有点都不能只和mid求dis 应是全部两两相比较 
	for(int i=1;i<k;i++)
	{
		for(int j=i+1;j<k;j++)
			res=min(res,dis(vv[i],vv[j]));
	}
	return res;
}

int main()
{
	read();
	sort(v+1,v+n+1,cmp);
	printf("%.4lf\n",solve(v,1,n));
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值