FFN的推理优化

首先参考这篇文章:https://zhuanlan.zhihu.com/p/685943779

为什么FFN需要这么大

常见的说法是Knowledge Neurons。tokens在前一层attention做全连接之后,通过FFN的参数中存放着大量训练过程中学习到的比较抽象的知识来进一步更新。相关的文章比如Transformer Feed-Forward Layers Are Key-Value MemoriesKnowledge Neurons in Pretrained Transformers

如果FFN存储着Transformer的知识,那么注定了这个地方不好做压缩加速:

  1. FFN变小意味模型容量也变小,大概率会让整体表现变得很差。两个FC中间会有个隐藏层维度的扩展比例,一般设置为4,也就是先把隐藏层维度变成原来的4倍,经过激活函数后再降回来。把这个地方调小会发现怎么都不如大点好。当然太大也不行,因为FFN这里的扩展比例决定了整个Transformer 在推理时的峰值内存占用,有可能造成out-of-memory ,所以大部分我们看到的扩展比例也就在4倍,一个比较合适的性能和内存的平衡。

  2. FFN中的activations非低秩。过去CNN上大家又发现激活有明显的低秩特性,所以可以通过low rank做加速。但是FFN中间的outputs很难看出低秩的特性,实际做网络压缩的时候会发现剪枝FFN的trade-off明显不如CNN,而非结构化剪枝又对硬件不友好。

对上面提到的论文Transformer Feed-Forward Layers Are Key-Value Memories进行阅读,看看FFN为什么重要:

Transformer Feed-Forward Layers Are Key-Value Memories

参考这篇:https://zhuanlan.zhihu.com/p/611278136

论文说transformer中的FFN层是Neural memory ---- 什么是Neural memory?

Neural memory是指在神经网络中实现或模拟记忆功能的机制。这种记忆机制使得模型能够存储、检索和利用过去的信息,以改进其在特定任务上的表现。核心思想是让模型具备一种长期和短期的记忆能力,能够在推理过程中访问和更新这些信息,从而更有效地处理具有上下文依赖性或长期依赖性的任务。

FFN层和神经记忆的数学形式几乎相同,只不过前者使用ReLU或Gelu等作为激活函数,神经记忆使用softmax作为激活函数。所以说,FFN层相当于是负责记忆的模块

  • FFN层占据了整个Transformer大约2/3的参数量,它可以视为一个key-value memory,也就是把第一个线性层当做key,第二个线性层当value。其中每一层的 key 用于捕获输入序列的模式(浅层模式+语义模式);value 可以基于key捕获的模式,给出下一个token的词表分布。

  • 每层的FF是由多个key-value组合而成,然后结合残差连接对每层的结果进行细化,最终产生模型的预测结果。在第一个线性层中,每个key是一个1*4d的向量(也就是矩阵的一行);在第二个线性层中,每个value是一个1*4d的向量。每一个key向量都能捕获输入序列的模式。

作者认为FF层中的 K 可以作为一种模式检测器,可以检测当前输入序列属于哪种模式,如它可以发现当前句子是以"substitues"结尾(这是比较浅层的字符模式)、当前句子描述的是电视节目(这是语义信息,比较高层)。下图体现了论文中的实验结果:浅层倾向于检测出浅层模式,高层倾向于检测语义模式

可以看出,layer小的时候,蓝色占比大,也就是shallow语义比例高;layer大之后,绿色占比高,也就是比较深层的语义信息。

深层和浅层应该指的是不同深度的Transformer层。

提升FFN效率的优化

目前最有前景的是改成 Mixture-of-Expert (MoE),GPT4和Mixtral 8x7B没出来之前基本只有Google在做,没人关注。当然现在时代变了,Mixtral 8x7B让MoE起死回生。一些改成MoE的文章:

综述中的优化方法

综述名:A Survey on Efficient Inference for Large Language Models

专注于修改FFN结构的方法

  • MoEfication可以使用模型的预训练权重,将非MoE的LLM转换为MoE版本。这种方法消除了对MoE模型昂贵预训练的需求。为了实现这一点,MoEfication首先将预训练的LLM中的FFN神经元划分为多个组。在每个组内,神经元通常由激活函数同时激活。然后,它将每个神经元组重构为一个专家。

  • Sparse Upcycling 引入了一种方法,直接从密集模型的检查点初始化基于MoE的LLM的权重。在这种方法中,基于MoE的LLM内的专家是密集模型中FFN的精确副本。通过采用这种直接的初始化方法,Sparse Upcycling可以高效地训练MoE模型以实现高性能。

  • MPOE提出通过矩阵乘积算子(MPO)分解来减少基于MoE的LLM的参数。这种方法涉及将FFN的每个权重矩阵分解为包含共同信息的全局共享张量和一组捕获特定特征的局部辅助张量。

专注于改进MoE路由模块的方法

另一种是专注于改进MoE内部路由模块的方法。在之前的MoE模型中,路由模块常常导致负载不平衡问题,这意味着一些专家被分配了大量的token,而其他专家处理的token却很少。这种不平衡不仅浪费了那些未充分利用的专家的能力,从而降低了模型性能,还降低了推理效率。路由模块设计的主要目标是在MoE专家的token分配中实现更好的平衡。下面是具体方法:

  • Switch Transformers 在最终损失函数中引入了一个额外的损失,即负载平衡损失,以惩罚路由模块的不平衡分配。这个损失被定义为token分配分数向量与均匀分布向量之间的缩放点积。因此,只有当所有专家的token分配平衡时,损失才会最小化。这种方法鼓励路由模块在专家之间均匀分配令牌,促进负载平衡,最终提高模型性能和效率。

  • BASE以端到端的方式为每个专家学习一个嵌入,并根据他们嵌入的相似性将专家分配给令牌。为了确保负载平衡,BASE提出了一个线性分配问题,并利用拍卖算法高效地解决这个问题。

  • Expert Choice引入了一种简单而有效的方法来确保MoE基础模型中的完美负载平衡。与之前将专家分配给令牌的方法不同,Expert Choice允许每个专家独立地根据他们的嵌入相似性选择前k个令牌。这种方法确保每个专家处理固定数量的令牌,即使每个令牌可能被分配给不同数量的专家。

关注改进MoE的训练方法

  • SE-MoE引入了一种新的辅助损失函数,称为路由器z损失,旨在在不损害性能的情况下提高模型训练的稳定性。SE-MoE发现,路由模块中softmax操作引入的指数函数可能会加剧舍入误差,导致训练不稳定。为了解决这个问题,路由器z损失对输入指数函数的大logits进行惩罚,从而在训练过程中最小化舍入误差。

  • StableMoE指出了基于MoE的大型语言模型(LLMs)中存在的路由波动问题,这表示在训练和推理阶段专家分配的一致性问题。对于相同的输入令牌,在训练过程中会被分配给不同的专家,但在推理时只激活一个专家。为了解决这个问题,StableMoE建议了一个更一致的训练方法。它首先学习一个路由策略,然后在模型主干训练和推理阶段保持固定。

  • SMoE-Dropout为基于MoE的LLMs设计了一种新的训练方法,提出在训练过程中逐渐增加激活的专家数量。这种方法增强了基于MoE模型的可扩展性,适用于推理和下游微调。

  • GLaM预训练并发布了一系列不同参数大小的模型,展示了它们在少样本任务上与密集型LLMs相当的性能。这个家族中最大的模型参数大小达到1.2万亿。

  • Mixtral 8x7B是一个值得注意的最近发布的开源模型。在推理时,它只使用130亿个活跃参数,并在不同的基准测试中与LLaMA-2-70B模型相比取得了优异的性能。Mixtral 8x7B在每一层中包含8个前馈网络(FFN)专家,每个令牌在推理时被分配给两个专家。

<think>嗯,用户想了解PyTorch推理过程中缓存优化的技术或问题。首先,我需要回顾一下在PyTorch中进行推理时常见的缓存问题以及现有的优化技术。 首先,KV缓存的问题。在自回归模型如Transformer中,每个解码步骤都需要保存键值对(KV缓存),这会导致显存占用随序列长度线性增长。特别是在处理不同长度的输入时,统一分配最大长度会造成显存浪费。这时候,分页注意力(PagedAttention)可能是一个解决方案,它像操作系统的虚拟内存一样管理KV缓存,提高显存利用率。这个技术在vLLM等推理系统中已经应用了,但PyTorch原生可能还不支持,需要自己实现或者结合其他库。[^1] 然后是动态批处理与缓存共享。动态批处理可以将多个请求合并,但不同请求的序列长度不同,导致缓存管理复杂。共享缓存可以减少冗余,比如多个生成任务共享部分上下文,但需要处理同步和生命周期的问题。可能需要用CUDA流或事件来管理并发访问,但PyTorch的动态计算图可能增加实现难度。 接下来是缓存压缩与量化。对KV缓存进行量化,比如FP16到INT8,减少显存占用,但可能会影响模型精度。此外,选择性缓存,只保留重要的注意力头或层,也可以节省空间,但需要分析模型对压缩的敏感度。PyTorch的量化工具可能在这里派上用场,不过需要验证量化后的模型效果是否下降。 内存管理优化。使用PyTorch的缓存分配器(如CachingAllocator)的配置调整,或者结合NVIDIA的Unified Memory技术,允许显存和主机内存之间的透明迁移。但Unified Memory可能会引入延迟,需要权衡。另外,及时释放不再需要的缓存张量,手动调用torch.cuda.empty_cache(),但频繁调用可能导致碎片化。 模型结构优化。比如Hyena过滤器,通过改进注意力机制减少对长序列的依赖,从而降低缓存需求。Hyena使用FFN和位置编码来替代部分注意力计算,可能更适合长序列推理。还有状态空间模型(SSM)如Mamba,用递归结构减少显存占用。[^2] 具体实现方面,可能需要参考现有的项目代码,比如convert_jsonl_to_xtuner_format函数,处理数据格式转换,优化数据加载和缓存的使用效率。[^3] 用户可能需要具体的代码示例,比如如何实现分页注意力或动态批处理。但PyTorch原生可能不支持这些高级特性,需要依赖第三方库或自定义内核。此外,还要考虑不同模型结构对缓存优化的适应性,比如是否适用于所有Transformer变体。 总结问题点,用户可能遇到的显存浪费、处理变长序列的效率、如何应用现有优化技术等。需要分点说明各种技术,优缺点,以及实现方法。同时,生成的相关问题要引导用户深入探讨,如分页注意力的实现细节、量化对模型的影响、模型结构优化的选择等。</think>### PyTorch推理缓存优化技术与问题分析 在PyTorch推理过程中,缓存优化是提升显存利用率和计算效率的核心问题,尤其在大规模语言模型(LLM)中表现显著。以下是关键技术点及解决方案: --- #### 1. **KV缓存管理问题** - **问题**:Transformer类模型在自回归生成时需缓存每层的键值(Key-Value, KV),显存占用与序列长度成正比。若统一按最大长度预分配,会导致显存浪费[^1]。 - **优化技术**: - **分页注意力(PagedAttention)**:将KV缓存划分为固定大小的“页”,动态分配显存,类似操作系统的虚拟内存管理。例如,vLLM框架通过此技术将显存利用率提升至80%以上[^1]。 - **按需释放**:在生成结束时立即释放对应缓存,避免残留占用。 - **示例代码(伪代码)**: ```python # 使用vLLM的分页管理API(需安装vLLM) from vllm import LLM, SamplingParams llm = LLM(model="meta-llama/Llama-2-7b-chat-hf") outputs = llm.generate(prompts, sampling_params=SamplingParams(temperature=0)) ``` --- #### 2. **动态批处理与缓存共享** - **问题**:多请求推理时,不同序列长度导致缓存对齐困难,显存碎片化。 - **优化技术**: - **动态批处理(Dynamic Batching)**:合并多个请求的推理步骤,共享部分显存。 - **缓存复用**:对相同前缀的输入(如多轮对话)复用已有KV缓存。 - **实现示例**: ```python # 使用PyTorch的显存复用机制 with torch.inference_mode(): output = model(input_ids, past_key_values=past_cache) updated_cache = output.past_key_values ``` --- #### 3. **缓存压缩与量化** - **问题**:FP16/FP32缓存占用显存过高。 - **优化技术**: - **量化(Quantization)**:将KV缓存从FP16压缩为INT8/INT4,通过反量化恢复精度。 - **选择性缓存**:仅保留重要注意力头或层的缓存[^2]。 - **代码示例**: ```python # 使用PyTorch量化工具 quantized_cache = torch.quantize_per_tensor(kv_cache, scale, zero_point, dtype=torch.qint8) ``` --- #### 4. **模型结构优化** - **替代注意力机制**:如Hyena过滤器通过**窗口化卷积**和**位置编码**减少长序列依赖,显存需求降低50%以上[^2]。 - **状态空间模型(SSM)**:如Mamba模型通过递归结构避免全局缓存,适合长序列推理--- #### 5. **显存管理工具** - **PyTorch原生支持**: - `torch.cuda.empty_cache()`:手动释放碎片显存。 - `max_split_size_mb`:配置缓存分配策略,减少碎片。 - **第三方工具**: - NVIDIA Unified Memory:允许显存与主机内存自动交换(需CUDA 11+)。 --- ### 典型问题与解决方案 | 问题场景 | 优化方案 | 适用模型类型 | |---------------------------|-----------------------------------|----------------------| | 长序列生成显存不足 | 分页注意力 + 量化 | Transformer | | 多请求并发效率低 | 动态批处理 + 缓存共享 | 所有自回归模型 | | 低精度需求场景 | FP16/INT8量化 + 选择性缓存 | 轻量级模型 | ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值