2687745979qq.com
码龄4年
关注
提问 私信
  • 博客:7,917
    社区:1
    问答:44
    7,962
    总访问量
  • 33
    原创
  • 2,165,715
    排名
  • 8
    粉丝
  • 0
    铁粉

个人简介:考研

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:河南省
  • 加入CSDN时间: 2020-10-30
博客简介:

qq_52076059的博客

查看详细资料
个人成就
  • 获得2次点赞
  • 内容获得1次评论
  • 获得5次收藏
创作历程
  • 32篇
    2023年
  • 1篇
    2022年
成就勋章
TA的专栏
  • 考研
    9篇
  • 题
    1篇
  • Open Harmony
    1篇
兴趣领域 设置
  • 人工智能
    图像处理
TA的社区
  • 啃论文俱乐部
    177 成员 54 内容
    管理者
创作活动更多

2024 博客之星年度评选报名已开启

博主的专属年度盛宴,一年仅有一次!MAC mini、大疆无人机、华为手表等精美奖品等你来拿!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

线代 第四讲

线代 第四讲
原创
发布博客 2023.07.29 ·
107 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

线代 第三讲 向量组

线代 第三讲 向量组
原创
发布博客 2023.07.27 ·
768 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

693574297931972数据恢复神器.apk

发布资源 2023.07.23 ·
apk

线代 第二讲 矩阵

线代第二讲
原创
发布博客 2023.07.23 ·
281 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

线代 第一讲

线代 第一讲
原创
发布博客 2023.07.12 ·
107 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

第十讲 积分等式与积分不等式

第十讲
原创
发布博客 2023.07.05 ·
303 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

第九讲 遗留问题

第九讲 遗留问题
原创
发布博客 2023.06.26 ·
57 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

第九讲 经典例题

第九讲
原创
发布博客 2023.06.26 ·
71 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

第九讲 一元微分学的几何应用

一元微分学的几何应用
原创
发布博客 2023.06.25 ·
94 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

第八讲 致命错误

致命错误
原创
发布博客 2023.04.29 ·
58 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

第八讲 经典例题

凑微分
原创
发布博客 2023.04.29 ·
64 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

第八讲 一元积分概念与计算

一元积分概念与计算
原创
发布博客 2023.04.29 ·
560 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

第七讲 经典例题

第六讲例题
原创
发布博客 2023.04.15 ·
96 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

第七讲 零点与微分不等式

零点与微分不等式
原创
发布博客 2023.04.13 ·
293 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

第六讲 致命错误

1
原创
发布博客 2023.04.13 ·
50 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

第六讲 经典例题

1
原创
发布博客 2023.04.11 ·
161 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

第六讲 十大定理及其使用

十大定理及其使用
原创
发布博客 2023.04.11 ·
91 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

第五讲 致命的错误

第五讲 致命的错误为0不可被约去为0不可被约去
原创
发布博客 2023.04.05 ·
53 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

第五讲 经典例题

第五讲 经典例题分段函数极值点与拐点判定分段函数极值点与拐点判定
原创
发布博客 2023.04.05 ·
166 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

第五讲 一元函数微分学的几何应用

\text { 设 } f(x) \text { 在 } x=x_{0} \text { 处可导, 且在点 } x_{0} \text { 处取得极值, 则必有 } f^{\prime}\left(x_{0}\right)=0 $做函数图形,含参方程根是重点(5/12’)只有单侧有定义,不满足双侧有定义,仅有最值。单调性、凹凸性、拐点(5‘)最值、取值范围(5‘)最值点不一定是极值点。极值点不一定是最值点。
原创
发布博客 2023.04.04 ·
191 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多