第三讲 函数极限与连续性基础

侧重点

数列极限

偏证明,多用单调有界准则、夹逼准则

函数极限

偏计算,着重洛必达、泰勒、无穷小比阶、归结原理

5-12分

邻域定义

img

极限定义

img
一点的极限跟该点没关系,跟该点所在邻域有关系

左右极限不相等

在这里插入图片描述

等式脱帽法

lim ⁡ x → x 0 f ( x ) = A ⇔ f ( x ) = A + a ( x ) , lim ⁡ x → x 0 α ( x ) = 0 \lim _{x \rightarrow x_{0}} f(x)=A \Leftrightarrow f(x)=A+a(x), \lim _{x \rightarrow x_{0}} \alpha(x)=0 xx0limf(x)=Af(x)=A+a(x),xx0limα(x)=0
img

函数极限的性质

唯一性

极限存在即唯一

局部有界性

如果 lim ⁡ x → x 0 f ( x ) = A , 则存在正常数 M 和 δ , 使得当 0 < ∣ x − x 0 ∣ < δ 时 , 有 ∣ f ( x ) ∣ ⩽ M . 如果 \lim _{x \rightarrow x_{0}} f(x)=A , 则存在正常数 M 和 \delta , 使得当 0<\left|x-x_{0}\right|<\delta 时, 有 |f(x)| \leqslant M . 如果xx0limf(x)=A,则存在正常数Mδ,使得当0<xx0<δ,f(x)M.

局部保号性

如果 f ( x ) → A ( x → x 0 ) , 且 A > 0 ( 或 A < 0 ) , 那么存在常数 δ > 0 , 使得当 0 < ∣ x − x 0 ∣ < δ 时 , 存在 f ( x ) > 0 ( 或 f ( x ) < 0 ) . 如果 f(x) \rightarrow A\left(x \rightarrow x_{0}\right) , 且 A>0 (或 \left.A<0\right) , 那么存在常数 \delta>0 , 使得当 0<\left|x-x_{0}\right|<\delta 时, 存在 f(x)>0( 或 f(x)<0 ). 如果f(x)A(xx0),A>0(A<0),那么存在常数δ>0,使得当0<xx0<δ,存在f(x)>0(f(x)<0).

推论

 如果在  x 0  的某去心邻戓内  f ( x ) ⩾ 0 (  或  ⩽ 0 )  且  lim ⁡ x → x 1 f ( x ) = A , 则  A ⩾ 0 (  或  ⩽ 0 ) .  \text { 如果在 } x_{0} \text { 的某去心邻戓内 } f(x) \geqslant 0(\text { 或 } \leqslant 0) \text { 且 } \lim _{x \rightarrow x_{1}} f(x)=A \text {, 则 } A \geqslant 0(\text { 或 } \leqslant 0) \text {. }  如果在 x0 的某去心邻戓内 f(x)0(  0)  limxx1f(x)=A A0(  0)

计算

四则运算

img

夹逼准则

img

洛必达法则

七种

七种未定式

img
在这里插入图片描述

【注】

对于 0 ∗ ∞ 0*\infty 0,对数函数和反三角函数应该保留到分子上
因为高数中被认为是复杂函数

泰勒公式

img
在这里插入图片描述

无穷小比阶

定义

img

0是一种特殊的无穷小

也是最高阶无穷小

比阶

imgimg

两个重要极限

lim ⁡ x → 0 sin ⁡ x x = 1 , lim ⁡ x → ∞ ( 1 + 1 x ) x = e {\color{Red} \lim _{x \rightarrow 0} \frac{\sin x}{x}=1, \lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=\mathrm{e}} x0limxsinx=1,xlim(1+x1)x=e

常见等价无穷小

泰勒公式推

当 x → 0 当 x \rightarrow 0 x0 时, 常用的等价无穷小有:

sin ⁡ x ∼ x , tan ⁡ x ∼ x , arcsin ⁡ x ∼ x , arctan ⁡ x ∼ x , ln ⁡ ( 1 + x ) ∼ x , e x − 1 ∼ x , a x − 1 ∼ x ln ⁡ a , 1 − cos ⁡ x ∼ 1 2 x 2 , ( 1 + x ) a − 1 ∼ α x \begin{array}{c} \sin x \sim x, \quad \tan x \sim x, \quad \arcsin x \sim x, \quad \arctan x \sim x, \quad \ln (1+x) \sim x, \quad \mathrm{e}^{x}-1 \sim x, \\ a^{x}-1 \sim x \ln a, \quad 1-\cos x \sim \frac{1}{2} x^{2}, \quad(1+x)^{a}-1 \sim \alpha x \end{array} sinxx,tanxx,arcsinxx,arctanxx,ln(1+x)x,ex1x,ax1xlna,1cosx21x2,(1+x)a1αx

x → 0  时,  x + x ( m < n ) ∼ x , 如  x →  时,  x 2 ± x 3 ∼ x 2 x \rightarrow 0 \text { 时, } x+x(m<n) \sim x \text {, 如 } x \rightarrow \text { 时, } x^{2} \pm x^{3} \sim x^{2} x0 x+x(m<n)x x x2±x3x2

用法
  • 可以整体替换
    如在 x → ∞ 时 , 1 x → 0 , 自然有 sin ⁡ 1 x ∼ 1 x , 也就是说只要在 x → x 0 时 如在 x \rightarrow \infty 时, \frac{1}{x} \rightarrow 0 , 自然有 \sin \frac{1}{x} \sim \frac{1}{x} , 也就是说只要在 x \rightarrow x_{0} 时 如在x,x10,自然有sinx1x1,也就是说只要在xx0,
    被等价的量 f ( x ) → 0 , 就有 sin ⁡ f ( x ) ∼ f ( x ) 被等价的量 f(x) \rightarrow 0 , 就有 \sin f(x) \sim f(x) 被等价的量f(x)0,就有sinf(x)f(x)

  •  凡是在 (或正确处理后在) 同一个  lim ⁡  里表现为乘除䄪无穷小都可等价  \text { 凡是在 (或正确处理后在) 同一个 } \lim \text { 里表现为乘除䄪无穷小都可等价 }  凡是在 (或正确处理后在同一个 lim 里表现为乘除无穷小都可等价 

     分子和分母可各看做一个整体,如对于分子,加减时也可用泰勒推导
    

在这里插入图片描述

常用技巧
A B \frac{A}{B} BA

分子分母展开为同阶
o ( x ) o(x) o(x)

img

A − B A-B AB

展开至系数不相等的项数即可

遵从幂次最低原则

img

海涅定理

沟通函数极限与数列极限的桥梁

我愿称之为桥梁定理

归结原则
img

img

函数的连续与间断

第一类间断点

可去间断点

 若  lim ⁡ x → x 0 f ( x ) = A ≠ f ( x 0 ) ( f ( x 0 )  甚至可以无定义  ) \text { 若 } \lim _{x \rightarrow x_{0}} f(x)=A \neq f\left(x_{0}\right)\left(f\left(x_{0}\right) \text { 甚至可以无定义 }\right)   xx0limf(x)=A=f(x0)(f(x0) 甚至可以无定义 )

又称可补间断点

跳跃间断点

左右极限存在但不相等

第二类间断点

无穷间断点

 若  lim ⁡ x → x 0 f ( x ) = ∞ , 的这类间断点  \text { 若 } \lim _{x \rightarrow x_{0}} f(x)=\infty \text {, 的这类间断点 }   limxx0f(x)=的这类间断点 

振荡间断点

y = sin ⁡ 1 x y=\sin \frac{1}{x} y=sinx1
在这里插入图片描述

间断点前提是去心邻域有定义的前提下,否则不讨论

image-20230114212039370

image-20230114212052100

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值