一元函数微分学的概念和计算
重点
- 导数与微分的计算
导数
定义
导数 = 函数增量 自变量增量 导数=\frac{函数增量}{自变量增量} 导数=自变量增量函数增量
f ′ ( x 0 ) = lim Δ x → 0 Δ y Δ x = lim Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x f^{\prime}\left(x_{0}\right)=\lim_{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x} f′(x0)=limΔx→0ΔxΔy=limΔx→0Δxf(x0+Δx)−f(x0)
f ′ ( x 0 ) = lim x → x 0 f ( x ) − f ( x 0 ) x − x 0 = k f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=k f′(x0)=limx→x0x−x0f(x)−f(x0)=k
书写规则
d y d x ∣ x = x + , d [ f ( x ) ] d x ∣ x = x 4 , y ′ ( x 0 ) 或 y ′ ∣ x = x x \left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{x=x_{+}},\left.\frac{\mathrm{d}[f(x)]}{\mathrm{d} x}\right|_{x=x_{4}}, y^{\prime}\left(x_{0}\right) \text { 或 }\left.y^{\prime}\right|_{x=x_{x}} dxdy x=x+,dxd[f(x)] x=x4,y′(x0) 或 y′∣x=xx
可导说法
- y = f ( x ) 在点 x 0 处可导; y=f(x) 在点 x_{0} 处可导; y=f(x)在点x0处可导;
- y = f ( x ) 在点 x 0 处导数存在 y=f(x) 在点 x_{0} 处导数存在 y=f(x)在点x0处导数存在
- f ′ ( x 0 ) = A ( A 为有限数 ) f^{\prime}\left(x_{0}\right)=A ( A 为有限数) f′(x0)=A(A为有限数)
左右导数
f ( x 0 ) = A ⇔ f − ′ ( x 0 ) = f + ′ ( x 0 ) = A f\left(x_{0}\right)=A \Leftrightarrow f^{\prime}_{-}\left(x_{0}\right)=f^{\prime}_{+}\left(x_{0}\right)=A f(x0)=A⇔f−′(x0)=f+′(x

文章详细阐述了一元函数微分学的基本概念,包括导数的定义、计算规则、几何意义以及可导性和左右导数。同时讨论了分段函数、反函数、对数求导、隐函数求导和高阶导数的求解方法,还提到了泰勒公式在高阶求导中的应用。此外,文中举例说明了特殊函数如绝对值函数和幂指函数的导数计算问题。
最低0.47元/天 解锁文章
1321

被折叠的 条评论
为什么被折叠?



