第四讲 一元函数微分学的概念和计算

文章详细阐述了一元函数微分学的基本概念,包括导数的定义、计算规则、几何意义以及可导性和左右导数。同时讨论了分段函数、反函数、对数求导、隐函数求导和高阶导数的求解方法,还提到了泰勒公式在高阶求导中的应用。此外,文中举例说明了特殊函数如绝对值函数和幂指函数的导数计算问题。
摘要由CSDN通过智能技术生成

重点

  • 导数与微分的计算

导数

定义

导数 = 函数增量 自变量增量 导数=\frac{函数增量}{自变量增量} 导数=自变量增量函数增量

f ′ ( x 0 ) = lim ⁡ Δ x → 0 Δ y Δ x = lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x f^{\prime}\left(x_{0}\right)=\lim_{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x} f(x0)=limΔx0ΔxΔy=limΔx0Δxf(x0+Δx)f(x0)

f ′ ( x 0 ) = lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 = k f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=k f(x0)=limxx0xx0f(x)f(x0)=k

书写规则

d y   d x ∣ x = x + , d [ f ( x ) ] d x ∣ x = x 4 , y ′ ( x 0 )  或  y ′ ∣ x = x x \left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{x=x_{+}},\left.\frac{\mathrm{d}[f(x)]}{\mathrm{d} x}\right|_{x=x_{4}}, y^{\prime}\left(x_{0}\right) \text { 或 }\left.y^{\prime}\right|_{x=x_{x}}  dxdy x=x+,dxd[f(x)] x=x4,y(x0)  yx=xx

可导说法

  1. y = f ( x ) 在点 x 0 处可导; y=f(x) 在点 x_{0} 处可导; y=f(x)在点x0处可导;
  2. y = f ( x ) 在点 x 0 处导数存在 y=f(x) 在点 x_{0} 处导数存在 y=f(x)在点x0处导数存在
  3. f ′ ( x 0 ) = A ( A 为有限数 ) f^{\prime}\left(x_{0}\right)=A ( A 为有限数) f(x0)=A(A为有限数)

左右导数

f ( x 0 ) = A ⇔ f − ′ ( x 0 ) = f + ′ ( x 0 ) = A f\left(x_{0}\right)=A \Leftrightarrow f^{\prime}_{-}\left(x_{0}\right)=f^{\prime}_{+}\left(x_{0}\right)=A f(x0)=Af(x0)=f+(x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值