第六讲 十大定理及其使用

文章详细介绍了微积分中的重要定理,包括有界与最值定理、介值定理、平均值定理、零点定理以及各种中值定理(如罗尔定理、拉格朗日中值定理、柯西中值定理),还有泰勒公式和导数、积分的相关性质。这些定理是理解和应用微积分的基础。
摘要由CSDN通过智能技术生成

重点

处理原函数

  • 有界与最值定理
  • 介值定理
  • 平均值定理
  • 零点定理

导函数

  • 费马定理
  • 罗尔定理
  • 拉格朗日中值定理
  • 柯西中值定理
  • 泰勒公式

积分

  • 积分中值定理

函数

${\color{Red} \text { 设 } f(x) \text { 在 }[a, b] \text { 上连续, 则 }} $

有界与最值定理

m ⩽ f ( x ) ⩽ M , 其中,  m , M  分别为  f ( x )  在  [ a , b ]  上的最小值与最大值.  m \leqslant f(x) \leqslant M \text {, 其中, } m, M \text { 分别为 } f(x) \text { 在 }[a, b] \text { 上的最小值与最大值. } mf(x)M其中m,M 分别为 f(x)  [a,b] 上的最小值与最大值

介值定理

 当  m ⩽ μ ⩽ M  时, 存在  ξ ∈ [ a , b ] , 使得  f ( ξ ) = μ \text { 当 } m \leqslant \mu \leqslant M \text { 时, 存在 } \xi \in[a, b] \text {, 使得 } f(\xi)=\mu   mμM 存在 ξ[a,b]使得 f(ξ)=μ

平均值定理

当 a < x 1 < x 2 < ⋯ < x n < b 时 , 在 [ x 1 , x n ] 内至少存在一点 ξ , 使 f ( ξ ) = f ( x 1 ) + f ( x 2 ) + ⋯ + f ( x n ) n 当 a<x_{1}<x_{2}<\cdots<x_{n}<b 时, 在 \left[x_{1}, x_{n}\right] 内至少存在一点 \xi , 使f(\xi)=\frac{f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{n}\right)}{n} a<x1<x2<<xn<b,[x1,xn]内至少存在一点ξ,使f(ξ)=nf(x1)+f(x2)++f(xn)

零点定理

 当  f ( a ) ⋅ f ( b ) < 0  时, 存在  ξ ∈ ( a , b ) , 使得  f ( ξ ) = 0 \text { 当 } f(a) \cdot f(b)<0 \text { 时, 存在 } \xi \in(a, b) \text {, 使得 } f(\xi)=0   f(a)f(b)<0 存在 ξ(a,b)使得 f(ξ)=0

导函数

费马定理

f ( x ) f(x) f(x) x 0 x_0 x0可导且是极值点 → \to f ( x 0 ) = 0 f(x_0)=0 f(x0)=0

证明

x 0 x_{0} x0为极大值

在这里插入图片描述

→ f ′ ( x 0 ) = 0 \to f'(x_0)=0 f(x0)=0
在这里插入图片描述

罗尔定理

f ( x ) f(x) f(x)满足

​ [a,b]上连续 → \to 保证曲线不会断

​ (a,b)内可导 → \to 因为结论有关导函数

f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b) → \to 确保曲线弯回来

→ \to  存在  ξ ∈ ( a , b ) , 使得  f ′ ( ξ ) = 0 \text { 存在 } \xi \in(a, b) \text {, 使得 } f^{\prime}(\xi)=0  存在 ξ(a,b)使得 f(ξ)=0

神秘的 F F F

==
在这里插入图片描述

在这里插入图片描述

几个推论

  • lim ⁡ x → a + f ( x ) = lim ⁡ x → b − f ( x ) = A \lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow b^{-}} f(x)=A limxa+f(x)=limxbf(x)=A ± ∞ \pm \infty ±,也可
    • a + 和 b − a^+ \text 和 b^- a+b也可为 + ∞ + \infty + − ∞ -\infty
  • 设 f ( x ) 在 ( a , + ∞ ) 内可导 , lim ⁡ x → a + f ( x ) = lim ⁡ x → + ∞ f ( x ) = A , 则在 ( a , + ∞ ) 内至少存在一点 ξ , 使 f ′ ( ξ ) = 0 设 f(x) 在 (a,+\infty) 内可导, \lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow+\infty} f(x)=A , 则在 (a,+\infty) 内至少存在一点 \xi , 使f^{\prime}(\xi)=0 f(x)(a,+)内可导,limxa+f(x)=limx+f(x)=A,则在(a,+)内至少存在一点ξ,使f(ξ)=0

拉格朗日中值定理

f ( x ) f(x) f(x)满足

​ [a,b]上连续 → \to 保证曲线不会断

​ (a,b)内可导 → \to 因为结论有关导函数

→ \to f ( b ) − f ( a ) = f ′ ( ξ ) ( b − a ) f(b)-f(a)=f^{\prime}(\xi)(b-a) f(b)f(a)=f(ξ)(ba)

如何用
在这里插入图片描述

柯西中值定理

f ( x ) f(x) f(x)满足

​ [a,b]上连续 → \to 保证曲线不会断

​ (a,b)内可导 → \to 因为结论有关导函数

g ′ ( x ) ≠ 0 g'(x)\ne0 g(x)=0 → \to 有意义

→ \to  存在  ξ ∈ ( a , b ) , 使得  \text { 存在 } \xi \in(a, b) \text {, 使得 }  存在 ξ(a,b)使得  f ( b ) − f ( a ) g ( b ) − g ( a ) = f ′ ( ξ ) g ′ ( ξ ) {\large \frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^{\prime}(\xi)}{g^{\prime}(\xi)}} g(b)g(a)f(b)f(a)=g(ξ)f(ξ)

拉格朗日不可推
在这里插入图片描述

一个具体,一个抽象
在这里插入图片描述

泰勒公式

在这里插入图片描述img

零点问题

函数零点定理

函数在 [ a , b ] [a,b] [a,b]上连续,  当  f ( a ) ⋅ f ( b ) < 0  时, 存在  ξ ∈ ( a , b ) , 使得  f ( ξ ) ′ = 0 \text { 当 } f(a) \cdot f(b)<0 \text { 时, 存在 } \xi \in(a, b) \text {, 使得 } f(\xi)'=0   f(a)f(b)<0 存在 ξ(a,b)使得 f(ξ)=0

导数零点定理

函数在 [ a , b ] [a,b] [a,b]上可导,  当  f ( a ) ′ ⋅ f ( b ) ′ < 0  时, 存在  ξ ∈ ( a , b ) , 使得  f ( ξ ) ′ = 0 \text { 当 } f(a)' \cdot f(b)'<0 \text { 时, 存在 } \xi \in(a, b) \text {, 使得 } f(\xi)'=0   f(a)f(b)<0 存在 ξ(a,b)使得 f(ξ)=0

单调性

 若  f ( x )  在  ( a , b )  内单调, 则  f ( x ) = 0  在  ( a , b )  内至多有一个根, 这里  a , b  可以是有限数, 也可以是无穷大  \text { 若 } f(x) \text { 在 }(a, b) \text { 内单调, 则 } f(x)=0 \text { 在 }(a, b) \text { 内至多有一个根, 这里 } a, b \text { 可以是有限数, 也可以是无穷大 }   f(x)  (a,b) 内单调 f(x)=0  (a,b) 内至多有一个根这里 a,b 可以是有限数也可以是无穷大 

罗尔原话 (罗尔定理的推论)

 若  f ( n ) ( x ) = 0  至多有  k  个根, 则  f ( x ) = 0  至多有  k + n  个根  \text { 若 } f^{(n)}(x)=0 \text { 至多有 } k \text { 个根, 则 } f(x)=0 \text { 至多有 } k+n \text { 个根 }   f(n)(x)=0 至多有 k 个根 f(x)=0 至多有 k+n 个根 

积分中值定理

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值