
【用Python简单实现生成对抗网络(GAN)】
然后,在训练过程中,生成器产生一个“假”数据,判别器评估这个“假”数据和真实数据的相似度,并根据评估结果更新判别器和生成器的权重。生成器的目标是生成类似于训练数据的“假”数据,而判别器的目标是识别“真实”数据和生成器生成的“假”数据。两个网络通过博弈的方式相互对抗学习,最终生成器可以生成与训练数据相似的新数据。2.在每一步迭代中,生成器生成一个“假”数据,判别器评估这个“假”数据和真实数据的相似度;4.生成器再次生成一个“假”数据,判别器再次评估这个“假”数据和真实数据的相似度;











