键盘上奔跑
码龄4年
关注
提问 私信
  • 博客:5,375
    5,375
    总访问量
  • 8
    原创
  • 990,526
    排名
  • 1
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:河北省
  • 加入CSDN时间: 2020-10-31
博客简介:

qq_52110584的博客

查看详细资料
个人成就
  • 获得5次点赞
  • 内容获得1次评论
  • 获得54次收藏
  • 代码片获得482次分享
创作历程
  • 7篇
    2023年
  • 1篇
    2021年
成就勋章
TA的专栏
  • 笔记
    2篇
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

179人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

【用Python简单实现生成对抗网络(GAN)】

然后,在训练过程中,生成器产生一个“假”数据,判别器评估这个“假”数据和真实数据的相似度,并根据评估结果更新判别器和生成器的权重。生成器的目标是生成类似于训练数据的“假”数据,而判别器的目标是识别“真实”数据和生成器生成的“假”数据。两个网络通过博弈的方式相互对抗学习,最终生成器可以生成与训练数据相似的新数据。2.在每一步迭代中,生成器生成一个“假”数据,判别器评估这个“假”数据和真实数据的相似度;4.生成器再次生成一个“假”数据,判别器再次评估这个“假”数据和真实数据的相似度;
原创
发布博客 2023.04.22 ·
1934 阅读 ·
4 点赞 ·
0 评论 ·
31 收藏

【用自编码器模型对MNIST手写数字数据集进行降维和重构】

2.定义一个自编码器模型,包括一个编码器和一个解码器,使用Tanh和Sigmoid函数作为激活函数,将输入图像压缩为3维的特征向量,再重构为原始图像;4.在训练过程中,每训练100个批次就将一部分测试数据集的图像作为例子,使用自编码器模型进行重构,并将重构后的图像进行可视化展示;代码实现了一个自编码器模型对MNIST手写数字数据集进行降维和重构,同时进行了可视化展示。5.训练完成后,使用自编码器模型对数据集进行特征提取,并通过三维图像展示压缩后的特征向量。
原创
发布博客 2023.04.15 ·
683 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

【pytorch 模型的保存和提取】

【代码】【pytorch 模型的保存和提取】
原创
发布博客 2023.04.03 ·
158 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

使用PyTorch实现卷积神经网络(CNN),对MNIST数据集中的手写数字进行分类

这是一个使用PyTorch实现的卷积神经网络(CNN),用于对MNIST数据集中的手写数字进行分类。该网络由两个卷积层组成,其中间有ReLU激活函数和最大池化层。第一个卷积层有16个过滤器,过滤器大小为5x5,填充为2,以保持输出大小与输入相同。第二个卷积层有32个过滤器,与第一个卷积层具有相同的过滤器大小和填充。在第二个卷积层之后,输出被展平,并通过具有10个输出神经元的全连接层传递,对应于10个可能的数字。从全连接层的输出经过softmax激活函数,以获得最终分类概率。
原创
发布博客 2023.04.02 ·
929 阅读 ·
1 点赞 ·
1 评论 ·
10 收藏

【利用PyTorch实现一个简单的三分类】

forward 方法:这是网络的前向传播函数,它接收输入 x,并通过神经网络的各层计算输出。在这个代码中,x, y = Variable(x), Variable(y) 这行代码的作用是将原始的 x 和 y 张量封装到 PyTorch 的 Variable 对象中。在上面的示例中,我们使用了一个具有10个隐藏层神经元的网络,用于解决三分类问题。self.predict 是输出层,输入特征数为 n_hidden(即隐藏层的神经元数量),输出神经元数为 n_output(即类别数量)。
原创
发布博客 2023.03.22 ·
1404 阅读 ·
0 点赞 ·
0 评论 ·
7 收藏

在pytorch自定义net实现回归算法

def()‘’’通常神经层都包括输入层、隐藏层和输出层。这里的输入层只有一个属性, 所以我们就只有一个输入;隐藏层我们可以自己假设,这里我们假设隐藏层有10个神经元;输出层和输入层的结构是一样的,所以我们的输出层也是只有一层。所以,我们构建的是——输入层1个、隐藏层10个、输出层1个的神经网络。‘’’net = Net(1, 10, 1) # 隐藏神经元10个print(net)plt.ion() # plt.ion()用于连续显示plt.show()
原创
发布博客 2023.03.19 ·
130 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【pytorch安装】

pytorch安装完成
原创
发布博客 2023.03.12 ·
55 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

2021-04-17

4.15和4.16学习内容程序在内存中的存储是什么样的?都是以二进制的形式存储的,只有0和1从整体上认识二进制了解PE结构:只适用于windows。任何一个windows上运行的可执行文件都要遵守一定的格式,这个格式就是PE文件结构。要想分析一个程序,就要知道程序从哪里开始的?代码存在哪里?数据存在哪里?安装了虚拟机...
原创
发布博客 2021.04.17 ·
81 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏