这是一个用Python编写的简单实现生成对抗网络(GAN)的脚本。
该脚本包括两个神经网络:生成器(G)和判别器(D)。生成器采用随机向量作为输入,生成一幅艺术作品。判别器接收一幅艺术作品作为输入,并判断它是否是由真实艺术家所绘制的。两个网络通过对抗学习的方式相互竞争,直到生成器可以生成与真实艺术品相似的作品。
生成器的目标是生成类似于训练数据的“假”数据,而判别器的目标是识别“真实”数据和生成器生成的“假”数据。两个网络通过博弈的方式相互对抗学习,最终生成器可以生成与训练数据相似的新数据。
具体来说,这段代码实现的是一个简单的 GAN,其中生成器(Generator)试图学习如何生成一个类似于二次函数的曲线。代码的第一部分定义了生成器和判别器的神经网络结构。然后,在训练过程中,生成器产生一个“假”数据,判别器评估这个“假”数据和真实数据的相似度,并根据评估结果更新判别器和生成器的权重。这个过程不断重复,直到生成器可以生成与真实数据相似的数据。
这段代码实现的训练过程如下:
1.定义了一个判别器和一个生成器的神经网络结构;
2.在每一步迭代中,生成器生成一个“假”数据,判别器评估这个“假”数据和真实数据的相似度;
3.计算判别器的损失函数,根据损失函数更新判别器的权重;
4.生成器再次生成一个“假”数据,判别器再次评估这个“假”数据和真实数据的相似度;
5.计算生成器的损失函数,根据损失函数更新生成器的权重;
6.重复步骤 2-5,直到生成器可以生成与真实数据相似的数据。
在每 50 步迭代之后,代码还会画出当前生成的曲线,以及真实曲线和生成器曲线的误差。
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE' # 防止Intel MKL导致的内存问题
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
# 超参数
BATCH_SIZE = 64 # 批大小
LR_G = 0.0001 # 生成器学习率
LR_D = 0.0001 # 判别器学习率
N_IDEAS = 5 # 随机向量的维度
ART_COMPONENTS = 15 # 可以绘制的画作中点的数量
PAINT_POINTS = np.vstack([np.linspace(-1, 1, ART_COMPONENTS) for _ in range(BATCH_SIZE)]) # 每个画作的点
def artist_works(): # 真实画作的生成函数(真实数据)
a = np.random.uniform(1, 2, size=BATCH_SIZE)
最低0.47元/天 解锁文章
857

被折叠的 条评论
为什么被折叠?



