Python 作为一门强大且易学的编程语言,广泛应用于数据科学、人工智能、自动化、Web 开发等多个领域。然而,想要从 Python 初学者成长为高效的开发者,不仅需要掌握基础语法,还需要不断优化编程思维,提高代码质量,熟练使用工具。本文总结了 10 个实用的小技巧,帮助你更快提升 Python 编码能力,让代码更简洁、高效、可读性更强。
目录
1. 善用 List Comprehension(列表推导式)
6. 使用字典推导式(Dictionary Comprehension)
10. 使用 functools.lru_cache 提高递归性能
1. 善用 List Comprehension(列表推导式)
Python 提供了一种简洁的方式来创建列表,即 列表推导式(List Comprehension),它比传统的 for
循环更加高效。
# 传统方式
squares = []
for i in range(10):
squares.append(i ** 2)
# 列表推导式
squares = [i ** 2 for i in range(10)]
✅ 优点:
-
代码更简洁,提高可读性
-
运行速度更快,减少冗余代码
2. 使用 enumerate() 代替手动索引
在循环中统计项目索引时,使用 enumerate()
能够更简洁。
fruits = ['apple', 'banana', 'cherry']
# 传统方式
for i in range(len(fruits)):
print(i, fruits[i])
# 使用 enumerate()
for i, fruit in enumerate(fruits):
print(i, fruit)
✅ 优点:
-
提高可读性
-
避免手动统计索引
3. 使用 zip() 同时遍历多个序列
zip()
允许同时遍历多个序列,避免手动操作索引。
names = ['Alice', 'Bob', 'Charlie']
ages = [25, 30, 35]
for name, age in zip(names, ages):
print(f'{name} is {age} years old')
✅ 优点:
-
简化同时遍历多个列表的代码
-
避免手动操作索引
4. 使用 f-string 提高字符串格式化效率
在 Python 3.6+ 中,f-string
是最简洁且最高效的字符串格式化方式。
name = 'Alice'
age = 25
# 传统方式
print('{} is {} years old'.format(name, age))
# f-string 方式
print(f'{name} is {age} years old')
✅ 优点:
-
字符串格式化更简洁
-
运行效率更高
5. 使用集合(set)去重
如果想快速去除列表中的重复元素,可以使用 set()
。
numbers = [1, 2, 2, 3, 4, 4, 5]
unique_numbers = list(set(numbers))
print(unique_numbers) # 输出 [1, 2, 3, 4, 5]
✅ 优点:
-
快速去重
-
代码更简洁
6. 使用字典推导式(Dictionary Comprehension)
与列表推导式类似,字典推导式可以用来快速创建字典。
squares = {x: x ** 2 for x in range(5)}
print(squares) # 输出 {0: 0, 1: 1, 2: 4, 3: 9, 4: 16}
✅ 优点:
-
简洁高效
-
适用于需要映射关系的数据
7. 使用 defaultdict
避免 KeyError
collections.defaultdict
允许在访问不存在的键时自动创建默认值。
from collections import defaultdict
word_count = defaultdict(int)
words = ['apple', 'banana', 'apple', 'orange']
for word in words:
word_count[word] += 1
print(word_count) # 输出 {'apple': 2, 'banana': 1, 'orange': 1}
✅ 优点:
-
避免
KeyError
-
代码更简洁
8. 使用 Counter
统计元素出现次数
collections.Counter
允许快速统计列表中元素的出现次数。
from collections import Counter
words = ['apple', 'banana', 'apple', 'orange', 'banana', 'apple']
word_counts = Counter(words)
print(word_counts) # 输出 {'apple': 3, 'banana': 2, 'orange': 1}
✅ 优点:
-
统计元素频率更简单
9. 使用 itertools
处理迭代对象
itertools
提供了许多高效的迭代器工具,例如 product()
、permutations()
、combinations()
。
from itertools import permutations
items = ['A', 'B', 'C']
for perm in permutations(items):
print(perm)
✅ 优点:
-
适用于生成排列组合
-
提高迭代效率
10. 使用 functools.lru_cache
提高递归性能
functools.lru_cache
允许缓存函数调用结果,提高递归性能。
from functools import lru_cache
@lru_cache(maxsize=None)
def fibonacci(n):
if n < 2:
return n
return fibonacci(n - 1) + fibonacci(n - 2)
print(fibonacci(50)) # 快速计算斐波那契数列
✅ 优点:
-
显著提高递归函数的性能