提升 Python 能力的 10 个小技巧

Python 作为一门强大且易学的编程语言,广泛应用于数据科学、人工智能、自动化、Web 开发等多个领域。然而,想要从 Python 初学者成长为高效的开发者,不仅需要掌握基础语法,还需要不断优化编程思维,提高代码质量,熟练使用工具。本文总结了 10 个实用的小技巧,帮助你更快提升 Python 编码能力,让代码更简洁、高效、可读性更强。        

目录

1. 善用 List Comprehension(列表推导式)

2. 使用 enumerate() 代替手动索引

3. 使用 zip() 同时遍历多个序列

4. 使用 f-string 提高字符串格式化效率

5. 使用集合(set)去重

6. 使用字典推导式(Dictionary Comprehension)

7. 使用 defaultdict 避免 KeyError

8. 使用 Counter 统计元素出现次数

9. 使用 itertools 处理迭代对象

10. 使用 functools.lru_cache 提高递归性能


1. 善用 List Comprehension(列表推导式)

Python 提供了一种简洁的方式来创建列表,即 列表推导式(List Comprehension),它比传统的 for 循环更加高效。

# 传统方式
squares = []
for i in range(10):
    squares.append(i ** 2)

# 列表推导式
squares = [i ** 2 for i in range(10)]

优点

  • 代码更简洁,提高可读性

  • 运行速度更快,减少冗余代码


2. 使用 enumerate() 代替手动索引

在循环中统计项目索引时,使用 enumerate() 能够更简洁。

fruits = ['apple', 'banana', 'cherry']

# 传统方式
for i in range(len(fruits)):
    print(i, fruits[i])

# 使用 enumerate()
for i, fruit in enumerate(fruits):
    print(i, fruit)

优点

  • 提高可读性

  • 避免手动统计索引


3. 使用 zip() 同时遍历多个序列

zip() 允许同时遍历多个序列,避免手动操作索引。

names = ['Alice', 'Bob', 'Charlie']
ages = [25, 30, 35]

for name, age in zip(names, ages):
    print(f'{name} is {age} years old')

优点

  • 简化同时遍历多个列表的代码

  • 避免手动操作索引


4. 使用 f-string 提高字符串格式化效率

在 Python 3.6+ 中,f-string 是最简洁且最高效的字符串格式化方式。

name = 'Alice'
age = 25

# 传统方式
print('{} is {} years old'.format(name, age))

# f-string 方式
print(f'{name} is {age} years old')

优点

  • 字符串格式化更简洁

  • 运行效率更高


5. 使用集合(set)去重

如果想快速去除列表中的重复元素,可以使用 set()

numbers = [1, 2, 2, 3, 4, 4, 5]
unique_numbers = list(set(numbers))
print(unique_numbers)  # 输出 [1, 2, 3, 4, 5]

优点

  • 快速去重

  • 代码更简洁


6. 使用字典推导式(Dictionary Comprehension)

与列表推导式类似,字典推导式可以用来快速创建字典。

squares = {x: x ** 2 for x in range(5)}
print(squares)  # 输出 {0: 0, 1: 1, 2: 4, 3: 9, 4: 16}

优点

  • 简洁高效

  • 适用于需要映射关系的数据


7. 使用 defaultdict 避免 KeyError

collections.defaultdict 允许在访问不存在的键时自动创建默认值。

from collections import defaultdict

word_count = defaultdict(int)
words = ['apple', 'banana', 'apple', 'orange']

for word in words:
    word_count[word] += 1

print(word_count)  # 输出 {'apple': 2, 'banana': 1, 'orange': 1}

优点

  • 避免 KeyError

  • 代码更简洁


8. 使用 Counter 统计元素出现次数

collections.Counter 允许快速统计列表中元素的出现次数。

from collections import Counter

words = ['apple', 'banana', 'apple', 'orange', 'banana', 'apple']
word_counts = Counter(words)
print(word_counts)  # 输出 {'apple': 3, 'banana': 2, 'orange': 1}

优点

  • 统计元素频率更简单


9. 使用 itertools 处理迭代对象

itertools 提供了许多高效的迭代器工具,例如 product()permutations()combinations()

from itertools import permutations

items = ['A', 'B', 'C']
for perm in permutations(items):
    print(perm)

优点

  • 适用于生成排列组合

  • 提高迭代效率


10. 使用 functools.lru_cache 提高递归性能

functools.lru_cache 允许缓存函数调用结果,提高递归性能。

from functools import lru_cache

@lru_cache(maxsize=None)
def fibonacci(n):
    if n < 2:
        return n
    return fibonacci(n - 1) + fibonacci(n - 2)

print(fibonacci(50))  # 快速计算斐波那契数列

优点

  • 显著提高递归函数的性能

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

昊昊该干饭了

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值