CNN
文章平均质量分 60
卷积神经网络相关知识点
风声向寂
不更新博客了,开始在Github上面从简单到复杂开始上传网络结构
展开
-
持续更新(Github):
持续更新(Github): yedupeng/Model at 2022.2.25 (github.com) 内含AlexNet、GoogleNet等从简单到复杂的网络结构。 暂时先不更新文档啦。原创 2022-02-25 16:30:09 · 1629 阅读 · 0 评论 -
目标检测—全卷积实现
目标检测—全卷积实现 文章目录目标检测—全卷积实现一.相关知识点的学习二分类交叉熵:MSE:多分类交叉熵:FCN网络:二.代码实现目标检测 首先照例分享学习资源: 带你逐行手写单目标检测算法,从数据到模型搭建、训练、预测_哔哩哔哩_bilibili 一.相关知识点的学习 二分类交叉熵: 其实现的公式: 上式中带上标的y表示预测值(0-1之间),是网络的预测结果,y是真实值,因为是二分类,所以y的值只分0和1 MSE: KSE(均方误差)函数一般用来检测模型的预测值和真实值之间原创 2021-10-20 18:30:55 · 1230 阅读 · 1 评论 -
卷积、池化、全连接的基本认识及最简单的手写体识别:
卷积、池化、全连接的基本认识及最简单的手写体识别: 文章目录卷积、池化、全连接的基本认识及最简单的手写体识别:数据输入层:卷积层:池化层:全连接层:最简单的手写体识别: 简单的记录下学习笔记: 卷积神经网络跟普通的神经网络类似,都具有可学习的权重(w)和偏置(b)。每个神经元都可接收一些输入,并做一些运算,输出是每个分类的分数。 卷积神经网络通常包括: 数据输入层: 本层的作用是对图像进行预处理,例如:去均值、归一化、PCA/白化。 去均值:将图像的中心拉至0点,即将每一张图片的特征都减去原创 2021-08-29 10:53:37 · 533 阅读 · 0 评论
分享