简单网络及应用
文章平均质量分 58
日常玩些简单网络
风声向寂
不更新博客了,开始在Github上面从简单到复杂开始上传网络结构
展开
-
持续更新(Github):
持续更新(Github):yedupeng/Model at 2022.2.25 (github.com)内含AlexNet、GoogleNet等从简单到复杂的网络结构。暂时先不更新文档啦。原创 2022-02-25 16:30:09 · 1629 阅读 · 0 评论 -
UNet网络实现图像分割
UNet网络实现图像分割 最近在b站上找到一篇UNet网络实现图像分割的教学视频,进行相关学习后决定记录相关知识和自己的理解。 标题首先,分享下教学视频:图像分割UNet硬核讲解(带你手撸unet代码)_哔哩哔哩_bilibili学习笔记(代码理解加相关知识拓展):1.UNet网络介绍 不同于CNN网络,UNet网络大致的结构就是: (左边是重复下采样->卷积,右边是重复上采样->卷积) 卷积->下采样->卷积->原创 2021-10-07 23:08:07 · 17503 阅读 · 9 评论 -
车辆识别笔记
车辆识别笔记文章目录车辆识别笔记1.首先分享下学习资源(gihub上找到的)2.VehicleDC.py代码理解:(1).相关库的调用以及选择对应的device和文件路径(2).以类的形式引用resnet18模型以及定义相关函数参数、前向传播(3).车辆分类 实现各个标签的划分及对图像类型进行转换(4).汽车的检测和识别(5).主函数调用1.首先分享下学习资源(gihub上找到的)CaptainEven/Vehicle-Car-detection-and-multilabel-classifica原创 2021-09-18 14:21:31 · 1223 阅读 · 2 评论 -
猫狗大战学习笔记:
猫狗大战学习笔记:1.首先简单说说代码的整体思路:1.首先设置相关参数(输入数据的大小,每批训练数量的多少),模型的保存路径等。2.选择是使用CPU还是GPU3.对Cat、Dog文件进行分类存放,并分出测试集4.对图像进行预处理5.再对全连接层的框架、参数经行构建,并计算交叉熵,构建优化器6.构建train()、val()函数,并在主函数中调用,对模型进行保存。2.代码及其相应理解(完整版代码在文末) 首先是定义相应的输入格式、每次训练所抓取的样本数量,模型的保存路径,以及调用GPU还原创 2021-09-09 13:40:13 · 269 阅读 · 0 评论 -
手写体识别识别(pytorch):
手写体识别识别: 因为前段日子记录过tensorflow的手写体识别,所以这里就对pytorch的手写体识别学习记录简单的记录以下。import torchimport torch.nn as nnimport torch.optim as optimfrom torchvision import datasetsfrom torchvision import transformsfrom torch.autograd import Variablebatch_size = 64ep原创 2021-09-08 17:00:10 · 2021 阅读 · 2 评论
分享