【李沐 动手学深度学习】视频课程笔记与重点总结 01-18,从线性回归到pytorch代码

目录

前言

线性回归

基础优化算法

梯度下降

softmax回归

损失函数

多层感知机

感知机

多层感知机

简单实现

非线性激活函数

模型选择

过拟合和欠拟合

权重衰退

丢弃法

数值稳定性

实战:房价预测

pytorch

模型构造

自定义网络

参数管理

参数的访问

内置初始化

参数绑定

自定义层

读写文件

GPU的使用

下期预告


前言

此文章适用于正在看李沐老师视频课程的同学,按照课程的顺序,简单的总结一下跟李沐学AI的个人空间-跟李沐学AI个人主页-哔哩哔哩视频 (bilibili.com)icon-default.png?t=N7T8https://space.bilibili.com/1567748478/channel/seriesdetail?sid=358497更详细的部分可以看如下文档链接(含代码),老师写的非常全面

《动手学深度学习》 — 动手学深度学习 2.0.0 documentationicon-default.png?t=N7T8https://zh.d2l.ai/

01-06的课程就不赘述了,就是讲了讲数组向量矩阵啥的,以及在python中的实现,所以我个人认为,需要有些数学基础和python语法基础。但我懒得学了,到时候不会再现查吧,有需要可以看上面提到的文档。

线性回归

  • 线性回归:是对n维输入的加权,外加偏差
  • 使用平方损失来衡量预测值和真实值的差异
  • 线性回归:有显示解
  • 线性回归:可以看作单层神经网络

基础优化算法

梯度下降

  • 挑选一个初始值,重复迭代参数(不断沿梯度反方向更新参数)
  • 沿梯度方向:将增加损失函数值
  • 学习率:步长的超参数(选太小墨迹,选太大震荡)

我们最常用的是:小批量随机梯度下降,介绍如下:

  • 深度学习默认求解算法
  • 随机采样 b 个样本 来近似 整个样本的损失
  • b:批量大小(太小不好利用,太大消耗资源)

softmax回归

回归

单连续数值输出

自然区间R

跟真实值的区别作为损失

分类

通常多个输出

输出i是预测为第i类的置信度

这儿我没看懂,所以写不出东西,不过应该问题不大

损失函数

y:真实值      y':预测值

表达了真实值和预测值之间的差距,loss要不断变小,模型训练的越来越好

主要的两种计算loss的方法

L2 Loss公式如下:

L1 Loss公式如下:

这儿也没看懂,貌似还需要链式法则和反向传播的知识


多层感知机

感知机

给定输入x,权重w,和偏移b,感知机输出:

分类效果:只能产生线性的分割面

多层感知机

  • 多个感知机进行融合......
  • 使用隐藏层和激活函数来得到非线性模型
  • 常用激标题三活函数有sigmoid,Tanh,ReLU
  • 使用softmax来处理多分类
  • 超参数:每层隐藏层的大小,隐藏层数

简单实现

单隐藏层 单分类

  • 输入:n维向量,隐藏层有m个,输出:单个类别
  • 超参数:隐藏层的大小

单隐藏层 多分类

和单分类的区别:输出是k个,对output还要做一次softmax

多隐藏层

超参数:每层隐藏层的大小 隐藏层数

非线性激活函数

保证输出结果非线性,避免线性,如果线性,相当于没有隐藏层

sigmoid 激活函数:将输入投影到(0 , 1)

Tanh 激活函数:将输入投影到(-1 , 1)

ReLU 激活函数:将输入投影到(0 , +∞)

模型选择

  • 训练误差:模型在训练数据上的误差
  • 泛化误差:模型在新数据上的误差

  • 训练数据集:训练模型(训练模型参数)
  • 验证数据集:评估模型好坏(选择模型超参数)
  • 测试数据集:只用一次

通常采用:k-则交叉验证

即:在没有足够数据时使用,将训练数据分为k块,没一块分别作为验证集,其余作为训练集

过拟合和欠拟合

模型和数据的关系

模型容量\数据简单复杂
正常欠拟合
过拟合正常

模型和误差的关系

权重衰退

  • 权重衰退:最广泛使用的正则化技术之一,也被称为L2正则化
  • 目的:对权重的数值大小进行约束(权重过大过拟合,过小效果差)
  • 正则项:控制模型复杂度的超参数(抵消过拟合的方法)

+ 号左侧是loss,右侧作为惩罚项 加到最小化损失的问题中,增加 λ ,控制模型复杂度

丢弃法

  • 即为dropout,将一些输出项随机置0
  • 也是一种正则项,增加鲁棒性(一个好的模型需要对输入数据的扰动鲁棒)和L2正则一样都是在模型训练时使用,只会对权重产生影响
  • 常作用于:多层感知机的隐藏层输出(层之间)
  • 丢弃概率:控制模型复杂度的超参数

无偏差的加入噪音:
对向量的每个元素操作,每个元素都是p的概率变为0,又有 1-p 的概率变为它的 1 / (1-p),这样才能保持期望不变,即E[h′]=h

使用dropout

数值稳定性

梯度爆炸

梯度消失

权重 = 梯度 * 学习率

目标:让梯度值在合理范围内(让训练更加稳定)

方法:

  • 让乘法变加法:ResNet,LSTM
  • 归一化:梯度归一化,梯度裁剪
  • 合理的权重初始和激活函数

这儿也没看懂,貌似还需要链式法则和反向传播的知识

实战:房价预测

来不及实战了,先欠着


pytorch

如下部分均使用python语言、pytorch模型实现,代码主要是提供样例,想直接运行还需要稍作需修改哦,比如,不要忘记导包

import torch
import torch.nn.functional as F
from torch import nn
.......

模型构造

在下方的代码中,许多地方都用到了nn.module,它是一个已经被写好的大类,常见的一些层,都是它的子类。我们只需要自定义类,继承nn.module就好了

自定义网络

此处讲述如何定义和设计模块,主要分三种方式来介绍

# ----------自定义块----------
class MLP(nn.Module):
    # 定义模型参数(层)。这里,我们声明两个全连接的层
    def __init__(self):
        # 调用MLP的父类Module的构造函数来执行必要的初始化。
        # 这样,在类实例化时也可以指定其他函数参数,例如模型参数params(稍后将介绍)
        super().__init__()
        self.hidden = nn.Linear(20, 256)  # 隐藏层(输入20输出256)
        self.out = nn.Linear(256, 10)  # 输出层(输入256输出10)
    # 定义模型的前向传播,即如何根据输入X返回所需的模型输出
    def forward(self, X):
        # 注意,这里我们使用ReLU的函数版本,其在nn.functional模块中定义。
        return self.out(F.relu(self.hidden(X)))
# 实例化多层感知机,然后在每次调用正向传播函数时调用这些层
net = MLP() # 实例化类
net(X)


# ----------顺序块----------
class MySequential(nn.Module):
    def __init__(self, *args):# *args:相当于把若干个参数打包传入(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))
        super().__init__() # 调用父类初始化函数
        for idx, module in enumerate(args):
            # 这里,module是Module子类的一个实例。我们把参数保存在'Module'类的成员
            # 变量_modules中。_module的类型是OrderedDict
            self._modules[str(idx)] = module
    def forward(self, X):
        # OrderedDict保证了按照成员添加的顺序遍历它们
        for block in self._modules.values():
            X = block(X)
        return X
# 设计一个简单的单层神经网络,一个线性层,一个ReLU,一个线性层
# input维度:20,output维度:10
net = MySequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))
net(X)


# ----------混合搭配各种组合块(套娃)----------
class NestMLP(nn.Module):
    def __init__(self):
        super().__init__()
        self.net = nn.Sequential(nn.Linear(20, 64), nn.ReLU(),
                                 nn.Linear(64, 32), nn.ReLU())
        self.linear = nn.Linear(32, 16)
    def forward(self, X):
        return self.linear(self.net(X))
chimera = nn.Sequential(NestMLP(), nn.Linear(16, 20), FixedHiddenMLP())
chimera(X)

在正向传播中执行代码,在init和forward中可以做计算

class FixedHiddenMLP(nn.Module):
    def __init__(self):
        super().__init__()
        # 不计算梯度的随机权重参数。因此其在训练期间保持不变
        self.rand_weight = torch.rand((20, 20), requires_grad=False)
        self.linear = nn.Linear(20, 20)

    def forward(self, X):
        X = self.linear(X)
        # 使用创建的常量参数以及relu和mm函数
        X = F.relu(torch.mm(X, self.rand_weight) + 1)
        # 复用全连接层。这相当于两个全连接层共享参数
        X = self.linear(X)
        # 控制流
        while X.abs().sum() > 1:
            X /= 2
        return X.sum()

参数管理

参数的访问

定义好类之后,参数如何访问,包含四种访问方式

net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 1))
X = torch.rand(size=(2, 4))
net(X)
# ----------参数的访问,例如 nn.Linear(8, 1)----------
print(net[2].state_dict()) # 第三个参数的weight权重和bias偏差


# ----------具体参数的访问,例如 最后一层的偏移----------
print(type(net[2].bias))
print(net[2].bias)
print(net[2].bias.data)


# ----------一次访问所有参数 整个网络的全部参数----------
print(*[(name, param.shape) for name, param in net.named_parameters()])


# ----------嵌套访问,block2嵌套了4个block1----------
def block1():
    return nn.Sequential(nn.Linear(4, 8), nn.ReLU(),
                         nn.Linear(8, 4), nn.ReLU())
def block2():
    net = nn.Sequential()
    for i in range(4):
        # 在这里嵌套
        net.add_module(f'block {i}', block1())
    return net
rgnet = nn.Sequential(block2(), nn.Linear(4, 1))
rgnet(X)

内置初始化

如何初始化参数,即修改默认初始化

感觉用处不大,先欠着

参数绑定

即 在不同网络之间共享权重

无论权重怎样更新,shared的权重都相同。可以理解为同一个moudle用了多次

# 我们需要给共享层一个名称,以便可以引用它的参数
shared = nn.Linear(8, 8)
net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(),
                    shared, nn.ReLU(),
                    shared, nn.ReLU(),
                    nn.Linear(8, 1))
net(X)
# 检查参数是否相同
print(net[2].weight.data[0] == net[4].weight.data[0])
net[2].weight.data[0, 0] = 100
# 确保它们实际上是同一个对象,而不只是有相同的值
print(net[2].weight.data[0] == net[4].weight.data[0])

自定义层

构造神经网络中的层,有两种方式

# ----------构造一个没有参数的层----------
class CenteredLayer(nn.Module):
    def __init__(self):
        super().__init__()
    def forward(self, X):
        return X - X.mean()
# 向该层提供一些数据
layer = CenteredLayer()
layer(torch.FloatTensor([1, 2, 3, 4, 5]))
# 将其作为组件合并到复杂模型中
net = nn.Sequential(nn.Linear(8, 128), CenteredLayer())
Y = net(torch.rand(4, 8))
Y.mean()


# ----------构造一个有参数的层----------
class MyLinear(nn.Module):
    def __init__(self, in_units, units):
        super().__init__()
        # 随机初始化后,放入Parameter
        self.weight = nn.Parameter(torch.randn(in_units, units))
        self.bias = nn.Parameter(torch.randn(units,))
    def forward(self, X):
        linear = torch.matmul(X, self.weight.data) + self.bias.data
        return F.relu(linear)
linear = MyLinear(5, 3)
linear.weight

使用自定义层,实现不同目的

# 前向计算
linear(torch.rand(2, 5))

# 构建模型
net = nn.Sequential(MyLinear(64, 8), MyLinear(8, 1))
net(torch.rand(2, 64))

读写文件

加载和保存张量tensor

# 构造一个长为4的向量,并将其存在'x-file'文件中
x = torch.arange(4)
torch.save(x, 'x-file')

# 读回内存
x2 = torch.load('x-file')

# 也可以存储一个张量list (x,y)
y = torch.zeros(4)
torch.save([x, y],'x-files')
x2, y2 = torch.load('x-files')

加载和保存模型参数

train模式:net.train()      eval模式:net.eval()     一般情况下相同

class MLP(nn.Module):
    def __init__(self):
        super().__init__()
        self.hidden = nn.Linear(20, 256)
        self.output = nn.Linear(256, 10)
    def forward(self, x):
        return self.output(F.relu(self.hidden(x)))
net = MLP()
X = torch.randn(size=(2, 20))
Y = net(X)


# 讲模型的参数存储为一个叫做“mlp.params”的文件中
torch.save(net.state_dict(), 'mlp.params')

# 实例化,读取文件中存储的参数
clone = MLP()
clone.load_state_dict(torch.load('mlp.params'))
clone.eval() # 开始评估函数

# 两个实例的模型参数相同 clone(X)和Y
Y_clone = clone(X)
Y_clone == Y

GPU的使用

关于如何使用GPU,服务器等问题,可以参考这篇文章

【新手小白】在Linux服务器或本地IDE,跑深度学习代码指南(不断更新)_深度学习跑代码-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/qq_52589927/article/details/131744235?spm=1001.2014.3001.5502接下来讲解有关代码的部分

所有深度学习框架都是默认在CPU上计算的,所以我们需要让它用GPU

# 用cpu  用第0个GPU  用第1个GPU
torch.device('cpu'), torch.device('cuda'), torch.device('cuda:1')


# 查询可用GPU数量
torch.cuda.device_count()


# GPU不存在时运行代码
def try_gpu(i=0):  #@save
    """如果存在,则返回gpu(i),否则返回cpu()"""
    if torch.cuda.device_count() >= i + 1:
        return torch.device(f'cuda:{i}')
    return torch.device('cpu')

def try_all_gpus():  #@save
    """返回所有可用的GPU,如果没有GPU,则返回[cpu(),]"""
    devices = [torch.device(f'cuda:{i}')
             for i in range(torch.cuda.device_count())]
    return devices if devices else [torch.device('cpu')]

try_gpu(), try_gpu(10), try_all_gpus()


# 在GPU上创建tensor
X = torch.ones(2, 3, device=try_gpu())


# 在第二个GPU上创建一个随机张量
Y = torch.rand(2, 3, device=try_gpu(1))


# 在GPU之间复制张量
Z = X.cuda(1) # 把X移到第二个GPU
Y + Z # 计算 X + Y


# 神经网络在GPU中做计算
net = nn.Sequential(nn.Linear(3, 1))
net = net.to(device=try_gpu()) # 把net的所有参数放到第0个GPU上
net(X) #计算
net[0].weight.data.device # 输出device(type='cuda', index=0)

下期预告

剩下的内容还没看,当前的内容也还没巩固,也许之后还会有更新和改动,准备重开一篇文章继续写!下章才到卷积,不知道啥时候才能学完啊啊啊 ——2024.8.15

接下来讲的是:关于卷积神经网络的介绍,非常全面

【动手学深度学习】视频课程笔记与重点总结 19-24,卷积神经网络大全-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/qq_52589927/article/details/141222674?spm=1001.2014.3001.5501

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值