SAM解码器的代码理解(一)

        建议先理解TwoWayAttentionBlock类,再理解TwoWayTransformer,并对照流程图看。

        

        查询为点嵌入,键为图像嵌入。先通过两个重复的TwoWayAttentionBlock,最后通过一个token-image交叉注意力。

class TwoWayTransformer(nn.Module):
    # 定义一个自定义的双向 Transformer 模块,用于处理图像和点的嵌入
    def __init__(
        self,
        depth: int,  # Transformer 的层数
        embedding_dim: int,  # 嵌入向量的维度
        num_heads: int,  # 多头注意力的头数
        mlp_dim: int,  # 前馈网络的隐藏层维度
        activation: Type[nn.Module] = nn.ReLU,  # 使用的激活函数
        attention_downsample_rate: int = 2,  # 注意力的下采样率
    ) -> None:
        """
        初始化 TwoWayTransformer 模块,并根据指定配置参数构建结构。

        参数:
          depth (int): Transformer 的层数。
          embedding_dim (int): 输入嵌入的维度。
          num_heads (int): 多头注意力的头数(必须整除 embedding_dim)。
          mlp_dim (int): 多层感知机(MLP)块中的隐藏层维度。
          activation (nn.Module): MLP 块中使用的激活函数。
        """
        super().__init__()  
        self.depth = depth  # 保存 Transformer 的层数
        self.embedding_dim = embedding_dim  # 保存嵌入维度
        self.num_heads = num_heads  # 保存多头注意力的头数
        self.mlp_dim = mlp_dim  # 保存 MLP 的隐藏层维度
        self.layers = nn.ModuleList()  # 初始化存储 Transformer 层的列表

        for i in range(depth):
            # 添加 TwoWayAttentionBlock 到层列表中
            self.layers
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值