Numpy数组元素的访问

访问数组元素

对数组而言,访问元素的方式可以通过切片和索引两种方式。在Numpy数据预处理库中,提供了许多索引,如整数索引、花式索引和布尔索引,我们可以通过这些索引我们可以实现一个、多个或者一行元素的访问。

1.整数索引

整数索引可以用来访问数组元素,用来获取数组中的一个元素或者一行元素。其用法类似于列表访问元素的方式,会根据索引获取相应位置的元素。例如:

array_1d = np.arange(3, 8)    
print(array_1d)

输出为:
[3 4 5 6 7]

# 获取索引为2的元素
print(array_1d[2])

输出为:
5

当然,如果数组为二维数组的话,则会返回对应索引的二维数组的一整行元素,并以一维数组的形式返回。
例如:

import numpy as np
array_2d = np.arange(1, 13).reshape(3, 4)   
print(array_2d)

输出为:
[[1 2 3 4]
[5 6 7 8]
[9 10 11 12]]

# 获取索引为1的一行元素
print(array_2d[1])

输出为:
[5 6 7 8]

当然如果想访问二维数组的单个元素,可以使用“二维数组[行索引,列索引]”
的形式实现。
例如:

# 获取行索引为1、列索引为2的元素
print(array_2d[2, 3])

输出为
12

2.花式索引

花式索引是Numpy预处理库中形式较为复杂的索引之一,是指用整数组成的数组或者列表作为索引。当使用花式索引访问一维数组时,会按顺序获取索引对应位置的元素,并以数组的形式返回。
例如:

import numpy as np
array_1d = np.arange(1, 9)    
print(array_1d)
# 访问索引为[2,5,8]的元素
print(array_1d[[2, 6]])

输出为:
[1 2 3 4 5 6 7 8]
[3 7]

3.布尔索引

布尔索引是是Numpy预处理库中另一个较为复杂的索引,他是以布尔值构成的数组为索引。使用布尔索引访问数组的时候,会根据条件生成一个与数组同样的布尔数组,然后将这些行元素以一维数组的形式进行返回。
例如:

# 使用布尔索引访问数组
print(array_2d > 5)
print(array_2d[array_2d > 5])

[[False False False False]
[False True True True]
[ True True True True]]
输出为:
[6 7 8 9 10 11 12]

当然,利用切片的方法也能访问元素。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

qq_52731200

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值