Asset Pricing:Equilibrium in Security Market
Security Market Equilibrium { r i s k a n d u n c e r t a i n t y M a r k e t C o m p l e t e n e s s o r I m c o m p l e t e n e s s \begin{cases}risk\ and\ uncertainty\\Market\ Completeness\ or\ Imcompleteness\end{cases} {risk and uncertaintyMarket Completeness or Imcompleteness
Fictionless Economy+Complete Information
假设一个简单的模型,证券在0期交易,在1期实现收益,0期是确定的,1期任何一种状态 S S S 都可能发生,表示不确定的未来。
假设有
J
J
J 个Assets,
S
S
S 种状态,证券
j
j
j 由它的收益
x
j
x_j
xj 标识(
j
=
1
,
2
,
.
.
.
,
J
j=1,2,...,J
j=1,2,...,J):
P
a
y
o
f
f
:
x
j
=
[
x
j
1
x
j
2
⋯
x
j
S
]
1
×
S
∈
R
S
Payoff : x_j=\left[\begin{matrix}x_{j1}&x_{j2}&\cdots&x_{jS}\end{matrix}\right]_{1\times S}\in R^S
Payoff:xj=[xj1xj2⋯xjS]1×S∈RS
所有证券的收益的
J
×
S
J\times S
J×S 矩阵
X
X
X:
P
a
y
o
f
f
m
a
t
r
i
x
:
X
=
[
x
11
x
12
⋯
x
1
S
x
21
x
22
⋯
x
2
S
⋮
⋮
⋯
⋮
x
J
1
x
J
2
⋯
x
J
S
]
J
×
S
∈
M
J
×
S
Payoff matrix : X=\left[\begin{matrix}x_{11}&x_{12}&\cdots&x_{1S}\\x_{21}&x_{22}&\cdots&x_{2S}\\\vdots&\vdots&\cdots&\vdots\\x_{J1}&x_{J2}&\cdots&x_{JS}\end{matrix}\right]_{J\times S}\in M^{J\times S}
Payoffmatrix:X=⎣⎢⎢⎢⎡x11x21⋮xJ1x12x22⋮xJ2⋯⋯⋯⋯x1Sx2S⋮xJS⎦⎥⎥⎥⎤J×S∈MJ×S
投资组合(portfolio) 由
J
J
J 种证券的持有股份构成,持有量可正可负可为零,正持有量代表多头,负持有量代表空头:
P
o
r
t
f
o
l
i
o
:
h
=
[
h
1
h
2
⋯
h
J
]
∈
R
J
i
f
h
j
<
0
→
S
h
o
r
t
−
s
e
l
l
i
n
g
Portfolio:h=\left[\begin{matrix}h_1&h_2&\cdots&h_J\end{matrix}\right]\in R^J\\if\ h_j<0\to Short-selling
Portfolio:h=[h1h2⋯hJ]∈RJif hj<0→Short−selling
投资组合收益(Portfolio Payoff):
P
o
r
t
f
o
l
i
o
P
a
y
o
f
f
:
h
⋅
X
=
∑
j
=
1
J
h
j
x
j
Portfolio\ Payoff:h·X=\sum_{j=1}^Jh_jx_j
Portfolio Payoff:h⋅X=j=1∑Jhjxj
资产张成空间(Asset Span):
M
=
{
z
∈
R
S
:
z
=
h
X
,
h
∈
R
J
}
M=\{z\in R^S:z=hX,h\in R^J\}
M={z∈RS:z=hX,h∈RJ}
If
M
=
R
S
M=R^S
M=RS, Market is complete. If
M
⫋
R
S
M\subsetneqq R^S
M⫋RS, Market is incomplete.
Proposition 1 : Market is complete iff R a n k ( X ) = S . Rank(X)=S. Rank(X)=S.
proof : 当且仅当对每个 z ∈ R S z\in R^S z∈RS,含有 J J J 个未知量 h j h_j hj 的方程 z = h X z=hX z=hX 都有解时,资产张成空间 M = R S M=R^S M=RS。而这个成立的充分必要条件是 R a n k ( X ) = S Rank(X)=S Rank(X)=S。
An asset J is redundant(冗余) iff its payoff can be replicated using a portfolio of other assets. Market has no redundant asset iff R a n k ( X ) = J . Rank(X)=J. Rank(X)=J.
在0期(t=0)时,证券价格由
J
J
J 维向量
p
=
(
p
1
,
p
2
,
⋯
,
p
J
)
∈
R
J
p=(p_1,p_2,\cdots,p_J)\in R^J
p=(p1,p2,⋯,pJ)∈RJ 表示,此时组合
h
h
h 的价格为:
p
h
T
=
∑
j
=
1
J
p
j
h
j
ph^T=\sum_{j=1}^Jp_jh_j
phT=j=1∑Jpjhj
证券
j
j
j 的回报(return) 是它的收益
x
j
x_j
xj 除以其价格
p
j
p_j
pj(假设价格不等于0;价格为0的回报无法定义):
r
j
=
x
j
p
j
r_j=\dfrac{x_j}{p_j}
rj=pjxj
对于一个个体投资者
i
∈
I
i\in I
i∈I,假设其在0期与1期均有消费,
S
S
S 种状态,t=0为
c
0
c_0
c0,t=1为
c
1
=
(
c
11
,
⋯
,
c
1
S
)
c_1=(c_{11},\cdots,c_{1S})
c1=(c11,⋯,c1S),
c
1
s
c_{1s}
c1s 代表以状态
s
s
s 为条件的消费。
存在有限( I I I)个个体,个体 i i i 的偏好由连续效用函数 u i : R + S + 1 → R u^i:R_{+}^{S+1}\to R ui:R+S+1→R 表示,可接受的消费被限制为正, u i ( c 0 , c 1 ) u^i(c_0,c_1) ui(c0,c1) 是消费计划 ( c 0 , c 1 ) (c_0,c_1) (c0,c1) 的效用,禀赋(endowment): ( ω 0 i , ω 1 i ) , i ∈ I (\omega_0^i,\omega_1^i),i\in I (ω0i,ω1i),i∈I。 u i u^i ui is continuous, Strictly increasing in both periods.
补充:向量不等式:
x , y ∈ R S x,y\in R^S x,y∈RS
x ≥ y ⇔ x i ≥ y i , ∀ i x\geq y\Leftrightarrow x_i\geq y_i,\forall i x≥y⇔xi≥yi,∀i
x > y ⇔ x ≥ y a n d x ≠ y x>y\Leftrightarrow x\geq y\ and\ x\neq y x>y⇔x≥y and x=y
x > > y ⇔ x i > y i , ∀ i x>>y\Leftrightarrow x_i>y_i,\forall i x>>y⇔xi>yi,∀i
x ≥ 0 x\geq0 x≥0(Positive)
x > 0 x>0 x>0(Positive and Non-zero)
x > > 0 x>>0 x>>0(Strictly Positive)
0期,个体用部分0期禀赋购买证券,余下部分用于消费。1期,个体将他们的1期禀赋加上其证券收益用于消费。Consumption and portfolio choice for
i
∈
I
i\in I
i∈I:
max
c
0
,
c
1
,
h
u
(
c
0
,
c
1
)
c
0
≤
ω
0
−
p
h
T
c
1
≤
ω
1
+
h
X
c
0
≥
0
,
c
1
≥
0
\max_{c_0,c_1,h}u(c_0,c_1)\\c_0\leq\omega_0-ph^T\\c_1\leq\omega_1+hX\\c_0\geq0,c_1\geq0
c0,c1,hmaxu(c0,c1)c0≤ω0−phTc1≤ω1+hXc0≥0,c1≥0
一阶条件(FOC):
∂
0
u
(
c
0
,
c
1
)
−
λ
≤
0
,
[
∂
0
u
(
c
0
,
c
1
)
−
λ
]
c
0
=
0
∂
s
u
(
c
0
,
c
1
)
−
μ
s
≤
0
,
[
∂
s
u
(
c
0
,
c
1
)
−
μ
s
]
c
s
=
0
,
∀
s
λ
p
=
X
μ
\partial_0u(c_0,c_1)-\lambda\leq0,[\partial_0u(c_0,c_1)-\lambda]c_0=0\\\partial_su(c_0,c_1)-\mu_s\leq0,[\partial_su(c_0,c_1)-\mu_s]c_s=0,\forall s\\\lambda p=X\mu
∂0u(c0,c1)−λ≤0,[∂0u(c0,c1)−λ]c0=0∂su(c0,c1)−μs≤0,[∂su(c0,c1)−μs]cs=0,∀sλp=Xμ
其中
λ
,
μ
\lambda,\mu
λ,μ 为正的拉格朗日乘子。
如果
u
u
u 是拟凹函数,那么这些条件为充要条件。假设解为内点且
∂
0
u
>
0
\partial_0u>0
∂0u>0,则上述不等式变为等式:
∂
0
u
(
c
0
,
c
1
)
=
λ
∂
s
u
(
c
0
,
c
1
)
=
μ
s
λ
p
=
X
μ
→
p
=
X
∂
1
u
∂
0
u
,
p
j
=
∑
s
x
j
s
∂
s
u
∂
0
u
\partial_0u(c_0,c_1)=\lambda\\\partial_su(c_0,c_1)=\mu_s\\\lambda p=X\mu\\\to p=X\frac{\partial_1u}{\partial_0u},p_j=\sum_sx_{js}\frac{\partial_su}{\partial_0u}
∂0u(c0,c1)=λ∂su(c0,c1)=μsλp=Xμ→p=X∂0u∂1u,pj=s∑xjs∂0u∂su
加入概率,可以写成:
p
j
=
E
[
x
j
u
′
(
c
1
)
u
′
(
c
0
)
]
=
E
[
m
x
j
]
p_j=E[x_j\frac{u'(c_1)}{u'(c_0)}]=E[mx_j]
pj=E[xju′(c0)u′(c1)]=E[mxj]
当且仅当收益矩阵
X
X
X 是方阵(
J
=
S
J=S
J=S)且满秩时,
X
X
X 为可逆矩阵,
X
−
1
X^{-1}
X−1 exist。即使
X
X
X 不是方阵(
J
≠
S
J\neq S
J=S),也具有左逆(Left Inverse)右逆(Right Inverse) 的性质。
Left Inverse :
L
X
=
I
S
LX=I_S
LX=IS .
L
L
L exsit iff
R
a
n
k
(
X
)
=
S
,
J
≥
S
.
Rank(X)=S,J\geq S.
Rank(X)=S,J≥S.
L
L
L exsit iff no redundant securities ,
M
=
R
S
.
M=R^S.
M=RS.
L
=
(
X
′
X
)
−
1
X
′
I
p
=
X
∂
1
u
∂
0
u
→
L
p
=
∂
1
u
∂
0
u
L=(X'X)^{-1}X'I\\p=X\frac{\partial_1u}{\partial_0u}\\\to Lp=\frac{\partial_1u}{\partial_0u}
L=(X′X)−1X′Ip=X∂0u∂1u→Lp=∂0u∂1u
Right Inverse :
X
R
=
I
J
XR=I_J
XR=IJ .
R
R
R exsit iff
R
a
n
k
(
X
)
=
J
,
J
≤
S
Rank(X)=J,J\leq S
Rank(X)=J,J≤S
R
=
X
′
(
X
X
′
)
−
1
I
c
1
=
ω
1
+
h
X
→
h
=
(
c
1
−
ω
1
)
R
R=X'(XX')^{-1}I\\c_1=\omega_1+hX\\\to h=(c_1-\omega_1)R
R=X′(XX′)−1Ic1=ω1+hX→h=(c1−ω1)R
当且仅当
X
X
X 的左逆和右逆都存在时,
X
X
X 可逆,此时
L
,
R
L,R
L,R 都是唯一的。若左逆存在,右逆不存在,则此时
L
L
L 不唯一;若右逆存在,左逆不存在,则此时
R
R
R 不唯一。
一般均衡(General Equilibrium):
在证券市场中均衡由证券价格向量 p p p、投资组合配置 { h i } \{h^i\} {hi} 和消费配置 { c 0 i , c 1 i } \{c_0^i,c_1^i\} {c0i,c1i} 组成,使得:
-
组合 { h i } \{h^i\} {hi} 和消费计划 { c 0 i , c 1 i } \{c_0^i,c_1^i\} {c0i,c1i} 是个体 i i i 的选择问题 max c 0 , c 1 , h u ( c 0 , c 1 ) \max_{c_0,c_1,h}u(c_0,c_1) maxc0,c1,hu(c0,c1) 在价格 p p p 处的解。
-
市场出清(Market Clearing Conditions):
∑ i h i = 0 ∑ i c 0 i ≤ ∑ i ω 0 i , ∑ i c 1 i ≤ ∑ i ω 1 i \sum_{i}h^i=0\\\sum_ic_0^i\leq\sum_i\omega_0^i,\sum_ic_1^i\leq\sum_i\omega_1^i i∑hi=0i∑c0i≤i∑ω0i,i∑c1i≤i∑ω1i
均衡的存在性与唯一性(Equilibrium Existence and Uniqueness):
If every investor’s feasible consumption plan is non-negetive, u ( ⋅ ) u(·) u(⋅) is strictly increasing, quasi-concave(拟凹), ω 0 i > 0 , ∀ i , ∃ h ∈ R J , s . t : x h > 0 \omega_0^i>0,\forall i,\exists h\in R^J,s.t:xh>0 ω0i>0,∀i,∃h∈RJ,s.t:xh>0, Then Equilibrium Exists.
3410

被折叠的 条评论
为什么被折叠?



