Asset Pricing:Equilibrium in Security Market

Asset Pricing:Equilibrium in Security Market

Security Market Equilibrium { r i s k   a n d   u n c e r t a i n t y M a r k e t   C o m p l e t e n e s s   o r   I m c o m p l e t e n e s s \begin{cases}risk\ and\ uncertainty\\Market\ Completeness\ or\ Imcompleteness\end{cases} {risk and uncertaintyMarket Completeness or Imcompleteness

Fictionless Economy+Complete Information

假设一个简单的模型,证券在0期交易,在1期实现收益,0期是确定的,1期任何一种状态 S S S 都可能发生,表示不确定的未来。

假设有 J J J 个Assets, S S S 种状态,证券 j j j 由它的收益 x j x_j xj 标识( j = 1 , 2 , . . . , J j=1,2,...,J j=1,2,...,J):
P a y o f f : x j = [ x j 1 x j 2 ⋯ x j S ] 1 × S ∈ R S Payoff : x_j=\left[\begin{matrix}x_{j1}&x_{j2}&\cdots&x_{jS}\end{matrix}\right]_{1\times S}\in R^S Payoff:xj=[xj1xj2xjS]1×SRS
所有证券的收益的 J × S J\times S J×S 矩阵 X X X
P a y o f f m a t r i x : X = [ x 11 x 12 ⋯ x 1 S x 21 x 22 ⋯ x 2 S ⋮ ⋮ ⋯ ⋮ x J 1 x J 2 ⋯ x J S ] J × S ∈ M J × S Payoff matrix : X=\left[\begin{matrix}x_{11}&x_{12}&\cdots&x_{1S}\\x_{21}&x_{22}&\cdots&x_{2S}\\\vdots&\vdots&\cdots&\vdots\\x_{J1}&x_{J2}&\cdots&x_{JS}\end{matrix}\right]_{J\times S}\in M^{J\times S} Payoffmatrix:X=x11x21xJ1x12x22xJ2x1Sx2SxJSJ×SMJ×S
投资组合(portfolio) J J J​ 种证券的持有股份构成,持有量可正可负可为零,正持有量代表多头,负持有量代表空头:
P o r t f o l i o : h = [ h 1 h 2 ⋯ h J ] ∈ R J i f   h j < 0 → S h o r t − s e l l i n g Portfolio:h=\left[\begin{matrix}h_1&h_2&\cdots&h_J\end{matrix}\right]\in R^J\\if\ h_j<0\to Short-selling Portfolio:h=[h1h2hJ]RJif hj<0Shortselling
投资组合收益(Portfolio Payoff)
P o r t f o l i o   P a y o f f : h ⋅ X = ∑ j = 1 J h j x j Portfolio\ Payoff:h·X=\sum_{j=1}^Jh_jx_j Portfolio Payoff:hX=j=1Jhjxj
资产张成空间(Asset Span)
M = { z ∈ R S : z = h X , h ∈ R J } M=\{z\in R^S:z=hX,h\in R^J\} M={zRS:z=hX,hRJ}
If M = R S M=R^S M=RS, Market is complete. If M ⫋ R S M\subsetneqq R^S MRS​, Market is i​ncomplete.

Proposition 1 : Market is complete iff R a n k ( X ) = S . Rank(X)=S. Rank(X)=S.

proof : 当且仅当对每个 z ∈ R S z\in R^S zRS​,含有 J J J​ 个未知量 h j h_j hj​ 的方程 z = h X z=hX z=hX​ 都有解时,资产张成空间 M = R S M=R^S M=RS​。而这个成立的充分必要条件是 R a n k ( X ) = S Rank(X)=S Rank(X)=S

An asset J is redundant(冗余) iff its payoff can be replicated using a portfolio of other assets. Market has no redundant asset iff R a n k ( X ) = J . Rank(X)=J. Rank(X)=J.

在0期(t=0)时,证券价格由 J J J 维向量 p = ( p 1 , p 2 , ⋯   , p J ) ∈ R J p=(p_1,p_2,\cdots,p_J)\in R^J p=(p1,p2,,pJ)RJ 表示,此时组合 h h h 的价格为:
p h T = ∑ j = 1 J p j h j ph^T=\sum_{j=1}^Jp_jh_j phT=j=1Jpjhj
证券 j j j回报(return) 是它的收益 x j x_j xj 除以其价格 p j p_j pj(假设价格不等于0;价格为0的回报无法定义):
r j = x j p j r_j=\dfrac{x_j}{p_j} rj=pjxj
对于一个个体投资者 i ∈ I i\in I iI,假设其在0期与1期均有消费, S S S 种状态,t=0为 c 0 c_0 c0,t=1为 c 1 = ( c 11 , ⋯   , c 1 S ) c_1=(c_{11},\cdots,c_{1S}) c1=(c11,,c1S) c 1 s c_{1s} c1s 代表以状态 s s s 为条件的消费。

存在有限( I I I)个个体,个体 i i i 的偏好由连续效用函数 u i : R + S + 1 → R u^i:R_{+}^{S+1}\to R ui:R+S+1R 表示,可接受的消费被限制为正, u i ( c 0 , c 1 ) u^i(c_0,c_1) ui(c0,c1) 是消费计划 ( c 0 , c 1 ) (c_0,c_1) (c0,c1) 的效用,禀赋(endowment): ( ω 0 i , ω 1 i ) , i ∈ I (\omega_0^i,\omega_1^i),i\in I (ω0i,ω1i),iI u i u^i ui​​​ is continuous, Strictly increasing in both periods.

补充:向量不等式:

x , y ∈ R S x,y\in R^S x,yRS

x ≥ y ⇔ x i ≥ y i , ∀ i x\geq y\Leftrightarrow x_i\geq y_i,\forall i xyxiyi,i

x > y ⇔ x ≥ y   a n d   x ≠ y x>y\Leftrightarrow x\geq y\ and\ x\neq y x>yxy and x=y

x > > y ⇔ x i > y i , ∀ i x>>y\Leftrightarrow x_i>y_i,\forall i x>>yxi>yi,i

x ≥ 0 x\geq0 x0(Positive)

x > 0 x>0 x>0​(Positive and Non-zero)

x > > 0 x>>0 x>>0​(Strictly Positive)

0期,个体用部分0期禀赋购买证券,余下部分用于消费。1期,个体将他们的1期禀赋加上其证券收益用于消费。Consumption and portfolio choice for i ∈ I i\in I iI:
max ⁡ c 0 , c 1 , h u ( c 0 , c 1 ) c 0 ≤ ω 0 − p h T c 1 ≤ ω 1 + h X c 0 ≥ 0 , c 1 ≥ 0 \max_{c_0,c_1,h}u(c_0,c_1)\\c_0\leq\omega_0-ph^T\\c_1\leq\omega_1+hX\\c_0\geq0,c_1\geq0 c0,c1,hmaxu(c0,c1)c0ω0phTc1ω1+hXc00,c10
一阶条件(FOC):
∂ 0 u ( c 0 , c 1 ) − λ ≤ 0 , [ ∂ 0 u ( c 0 , c 1 ) − λ ] c 0 = 0 ∂ s u ( c 0 , c 1 ) − μ s ≤ 0 , [ ∂ s u ( c 0 , c 1 ) − μ s ] c s = 0 , ∀ s λ p = X μ \partial_0u(c_0,c_1)-\lambda\leq0,[\partial_0u(c_0,c_1)-\lambda]c_0=0\\\partial_su(c_0,c_1)-\mu_s\leq0,[\partial_su(c_0,c_1)-\mu_s]c_s=0,\forall s\\\lambda p=X\mu 0u(c0,c1)λ0,[0u(c0,c1)λ]c0=0su(c0,c1)μs0,[su(c0,c1)μs]cs=0,sλp=Xμ
其中 λ , μ \lambda,\mu λ,μ 为正的拉格朗日乘子。

如果 u u u 是拟凹函数,那么这些条件为充要条件。假设解为内点且 ∂ 0 u > 0 \partial_0u>0 0u>0,则上述不等式变为等式:
∂ 0 u ( c 0 , c 1 ) = λ ∂ s u ( c 0 , c 1 ) = μ s λ p = X μ → p = X ∂ 1 u ∂ 0 u , p j = ∑ s x j s ∂ s u ∂ 0 u \partial_0u(c_0,c_1)=\lambda\\\partial_su(c_0,c_1)=\mu_s\\\lambda p=X\mu\\\to p=X\frac{\partial_1u}{\partial_0u},p_j=\sum_sx_{js}\frac{\partial_su}{\partial_0u} 0u(c0,c1)=λsu(c0,c1)=μsλp=Xμp=X0u1u,pj=sxjs0usu
加入概率,可以写成:
p j = E [ x j u ′ ( c 1 ) u ′ ( c 0 ) ] = E [ m x j ] p_j=E[x_j\frac{u'(c_1)}{u'(c_0)}]=E[mx_j] pj=E[xju(c0)u(c1)]=E[mxj]
当且仅当收益矩阵 X X X​ 是方阵( J = S J=S J=S​)且满秩时, X X X​ 为可逆矩阵, X − 1 X^{-1} X1​​ exist。即使 X X X 不是方阵( J ≠ S J\neq S J=S​),也具有左逆(Left Inverse)右逆(Right Inverse) 的性质。

Left Inverse : L X = I S LX=I_S LX=IS​ . L L L​ exsit iff R a n k ( X ) = S , J ≥ S . Rank(X)=S,J\geq S. Rank(X)=S,JS. L L L exsit iff no redundant securities , M = R S . M=R^S. M=RS.
L = ( X ′ X ) − 1 X ′ I p = X ∂ 1 u ∂ 0 u → L p = ∂ 1 u ∂ 0 u L=(X'X)^{-1}X'I\\p=X\frac{\partial_1u}{\partial_0u}\\\to Lp=\frac{\partial_1u}{\partial_0u} L=(XX)1XIp=X0u1uLp=0u1u
Right Inverse : X R = I J XR=I_J XR=IJ​ . R R R​ exsit iff R a n k ( X ) = J , J ≤ S Rank(X)=J,J\leq S Rank(X)=J,JS
R = X ′ ( X X ′ ) − 1 I c 1 = ω 1 + h X → h = ( c 1 − ω 1 ) R R=X'(XX')^{-1}I\\c_1=\omega_1+hX\\\to h=(c_1-\omega_1)R R=X(XX)1Ic1=ω1+hXh=(c1ω1)R
当且仅当 X X X 的左逆和右逆都存在时, X X X 可逆,此时 L , R L,R L,R 都是唯一的。若左逆存在,右逆不存在,则此时 L L L 不唯一;若右逆存在,左逆不存在,则此时 R R R 不唯一。

一般均衡(General Equilibrium):

在证券市场中均衡由证券价格向量 p p p、投资组合配置 { h i } \{h^i\} {hi} 和消费配置 { c 0 i , c 1 i } \{c_0^i,c_1^i\} {c0i,c1i}​ 组成,使得:

  1. 组合 { h i } \{h^i\} {hi} 和消费计划 { c 0 i , c 1 i } \{c_0^i,c_1^i\} {c0i,c1i} 是个体 i i i 的选择问题 max ⁡ c 0 , c 1 , h u ( c 0 , c 1 ) \max_{c_0,c_1,h}u(c_0,c_1) maxc0,c1,hu(c0,c1) 在价格 p p p 处的解。

  2. 市场出清(Market Clearing Conditions)
    ∑ i h i = 0 ∑ i c 0 i ≤ ∑ i ω 0 i , ∑ i c 1 i ≤ ∑ i ω 1 i \sum_{i}h^i=0\\\sum_ic_0^i\leq\sum_i\omega_0^i,\sum_ic_1^i\leq\sum_i\omega_1^i ihi=0ic0iiω0i,ic1iiω1i

均衡的存在性与唯一性(Equilibrium Existence and Uniqueness):

If every investor’s feasible consumption plan is non-negetive, u ( ⋅ ) u(·) u() is strictly increasing, quasi-concave(拟凹), ω 0 i > 0 , ∀ i , ∃ h ∈ R J , s . t : x h > 0 \omega_0^i>0,\forall i,\exists h\in R^J,s.t:xh>0 ω0i>0,i,hRJ,s.t:xh>0​, Then Equilibrium Exists.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值