- 博客(251)
- 资源 (4)
- 收藏
- 关注
原创 计算机网络笔记之物理层
卫星的通信频带宽,通信容量大;卫星的通信距离远,且通信费用与通信距离无关;但卫星的通信时延较大,保密性较差。通信容量大,传输损耗小,抗干扰好,保密性好,体积小。但施工时难于将两根光纤精确连接。比如四进制码元,在电平中有四种波形,用两个比特来表示一个码元。有线传输介质主要有同轴电缆、双绞线和光缆。波特率就是每秒传输码元的个数。多个光纤就可以捆成一个光缆。计算机网络 第八版 谢希仁。
2023-01-06 16:12:40
1176
4
原创 论文阅读之Attention-based Conditioning Methods for External Knowledge Integration(2019)
在本文中,我们提出了一种将外部知识整合到循环神经网络 (RNN) 中的新方法。我们建议将词典特征集成到基于 RNN 的体系结构的自我注意机制中。这种对注意力分布的调节形式,加强了手头任务中最显着的词的贡献。我们介绍了三种方法,即注意力串联、基于特征的门控和仿射变换。在六个基准数据集上的实验表明了我们方法的有效性。基于注意特征的门控在任务之间产生一致的性能改进。我们的方法作为基于 RNN 的模型的简单附加模块实现,具有最小的计算开销,并且可以适应任何深度神经架构。
2022-12-27 17:16:27
232
1
原创 使用Python读取markdown文件并统计字数
因为大数据的大作业是整理这个学期所学的东西,还要求最低字数不低于3000字,不然就不及格,并且要求用md文件格式,我写好了之后,就是翻来覆去不知道咋统计这个字数,下来VScode统计字数的插件,发现对中文的字没用,并且我感觉代码应该不会被算到字数里吧,因此网上搜了好久,未果,于是才想起来,为啥这东西不能自己来做呢?
2022-12-23 22:26:00
1784
1
原创 Java的一些函数方法的用法
这几天Android大作业做的,感觉java都给我整会了,赶紧记录一下。//定义一个key为String value为Integer的treemap TreeMap < String , Integer > timesData_success = new TreeMap < >();List < 数据类型 > list = new ArrayList < 数据类型 >()这就是创建一个存map的list。
2022-12-10 16:54:53
702
2
原创 python的print输出在控制台并且将输出内容保存为文件
深度学习log日志还是蛮重要的,print出来还不够,还得保存一下,目前找到的最方便的就如下所示了。
2022-12-02 21:05:15
3214
5
原创 大数据开发之词频统计传参打包成jar包发送到Hadoop运行并创建可执行文件方便运行
首先需要修改代码,将setMaster(“local[*]”)删了。点击-号,这些全删了,留最后一个compile output即可。然后需要进行瘦身,把不需要的包删了,这样打包出来就比较小了。然后选择spark文件里的jars下所有的jar包。同时点击一下,我们也可以看到打包后存放的路径。其中路径得你自己集群的文件路径才能运行成功。点击Project Structure。跳出这个,点击rebuild即可。注意jar包的路径得全路径了。此时可以测试一下传参效果。这就是传入的两个参数。可以调试的时候试试。
2022-12-01 12:03:39
590
原创 Android Studio之简单快速方便的查看数据库的内容
看网上对Android数据库可视化的操作很多,有的装插件,有的把数据库搞出来用别的打开,有的终端看…反正我是没咋学会不过下面有个极其简单的办法就可以看数据库。
2022-11-30 12:06:05
5887
4
原创 论文阅读之Syntax Encoding with Application in Authorship Attribution(2018)
我们提出了一种新的策略,将句子的语法分析树编码为可学习的分布式表示。所提出的语法编码方案是可证明的信息无损的。具体而言,为句子中的每个单词构建嵌入向量,对语法树中与该单词对应的路径进行编码。这些“语法嵌入”向量与句子中的单词(因此它们的嵌入向量)之间的一一对应使得将这种表示与所有单词级NLP模型相结合变得容易。我们通过经验展示了作者归属域上语法嵌入的好处,其中我们的方法改进了现有技术,并在五个基准数据集上实现了新的性能记录。这篇文章提出一种语法树的编码方式,能够几乎无损地编码语法树。
2022-11-29 17:28:36
1165
3
原创 Android移动应用开发之接收短信读取并显示在TextView
就是点击发送短信,然后能够读取短信的内容显示在TextView中。点击虚拟机上面三个点,就会跳出一个界面。就能对我们的虚拟机进行打电话和发短信了。这样就完成了对短信的发送和读取了、选择左侧的Phone。
2022-11-26 20:41:02
2364
1
原创 Scala配置和Spark配置以及Scala一些函数的用法(附带词频统计实例)
先给出spark和Scala的下载地址,这是我用的版本pwd=1111也可以自己去官网下载。
2022-11-26 16:01:39
1263
原创 Scala的简单语法介绍
可以看到,常量是初始复制就确定了,不能修改和重新复制,因为常量会比变量的执行速度等快,所以能定义常量的地方就定义常量。每次都会返回语句块中最后一段代码的返回值,如果不存在返回值,则返回Unit,表示返回值为空的意思。Scala的语句块拥有返回值,这也是为什么Scala语句比较简短的原因之一。与Java类似,分为可变和不可变数组,默认是不可变数组,初始化后长度不可变。可以看到,因为Scala语言自带语句块返回值,使得代码简洁了不少。圆括号里的数据,可以是不同的数据类型。数据类型表达:变量名:数据类型。
2022-11-26 15:06:30
456
原创 Hadoop对集群的一些操作的命令介绍
将当前目录下的a1.txt文件上传到集群上icyhunter的文件夹下并命名为a…将abc.txt文件复制到0132目录下并改名为abc_2.txt。将集群上00文件夹下的a2_2.txt文件下载到home目录下。移动就是说,本地移到集群,那么本地就没这个文件了。删除文件:-rm,删除文件 -rmdir 文件夹名。将aa1.txt的内容追加到abc.txt文件后面。查看集群icyhunter文件夹下的文件列表信息。hdfs移动到本地:-moveToLocal。将a2.txt改名为b2.txt。
2022-11-26 14:40:06
1418
原创 Hadoop集群启动但是没有datanode/namenode的情况
Hadoop集群我们是用三台笔记本电脑装了Ubuntu虚拟机然后进行集群的搭建。但是后来启动集群,一开始是主节点没启动起来,因为配置文件看走眼,配错了,然后又重新初始化了一次,然后可能因为重复初始化,导致datanode又没了,然后一直在尝试,一直在搜CSDN到底什么原因。目前根据搜索到的以及老师说的总结起来有三点:1.配置文件出错了2.ssh免密没做好3.重复初始化这三个问题应该在之前不断循环往复的出现…直到这周终于把集群启动起来并且能够正常工作了。
2022-11-26 14:05:08
8413
1
原创 Android移动应用开发之使用异步调用进度条及实现幻灯片切换效果
实现思路还是比较简单,就是创建一个线程,然后永真循环,然后根据计数余数确定改呈现什么样的内容。因为每次停留300ms然后进行切换。
2022-11-26 13:02:18
619
原创 ImportError: cannot import name ‘xxx‘ from ‘xxx‘关于python导包的问题
然后仔细看看报错,大概意思就是说,没在D:\anaconda\envs\TF2.1\lib\site-packages\utils_因此,如果当你的包路径存在sys.path中时,如果还是导入会报错,那么大概率就是包重名了。github clone下来的代码,在矩池云跑的好好的,在自己电脑跑却报错。仔细想想,应该就是环境里有包的名称和这个一模一样也叫utils了。那么换个问法,怎么才能让他不去这里面找呢?把自己写的包的名字改成不一样就行了。然后运行代码,就没问题了。加了,没用吖,依旧报错。
2022-11-25 16:37:13
10470
原创 论文阅读之A Challenge Dataset and Effective Models for Aspect-Based Sentiment Analysis(2019)
读这篇论文之前,我们得先大概了解一下方面级情感分析是什么。Aspect-Category Sentiment Analysis(ACSA):给定Aspect类别(预定义),进行情感极性分类Aspecct-Term Sentiment Analysis(ATSA):识别关于文章出现的目标实体的情感极性例如一句话:其中target表示句子中出现的方面词,预测方面词的情感倾向其中Category表示一类事物的范畴,不一定是在句子里出现的词,而是预先设定的范畴。
2022-11-23 15:26:25
505
原创 论文阅读之Dynamic Routing Between Capsules(2017)
capsule network 可以简单理解为将神经网络的标量计算,赋予了方向,变换成了向量进行计算。标量只有大小之分。向量不仅有大小,还有方向之分。应该可以略微感受到这种思路的魔力了。capsule 主要是能够改进CV里CNN对特征提取。因为对于同类事务,CNN经过maxpooling得到最后的结果基本相同,就相当与是不同的输入得到了相同的输出,这其实是不利于泛化能力提高的。
2022-11-22 19:01:35
629
原创 机器学习之K-Means聚类(python手写实现+使用Silhouette Coefficient来选取最优k值)
在"无监督学习" (unsupervised learning) 中,训练样本的标记信息是未知的,目标是通过对无标记训练样本的学习来揭示数据的内在性质及规律,为进一步的数据分析提供基础。聚类结果的"簇内相似度" (intra-cluster similarity) 高且"簇间相似度" (inter-cluster similarity)被认为是比较好的聚类结果。K-Means聚类又叫K均值聚类,是一种线性时间复杂度的聚类方法,也是比较成熟的一种聚类算法。也就是说明s(i)越大说明聚类效果越好。
2022-11-21 18:43:57
2341
原创 ERROR SparkContext: Error initializing SparkContext. java.net.BindException: Cannot assign requested
不卖关子了,就是hosts文件绑定的ip地址和你当前的ip地址是不对的。但是我明明上次成功了啊,spark还能自己坏掉不成吗?按i允许编辑,然后将绑定的ip地址修改为当前的ip。使用Ubuntu虚拟机启动spark失败。看看报错大概就是没有正确绑定地址。
2022-11-17 13:57:49
1711
原创 Android移动应用开发之使用ListView+SQLiteOpenHelper实现商品列表添加删除的界面
这就是实现的效果展示。能够输入数据然后添加到数据库,ListView会自动展现数据库的内容,点击删除能够将数据库中的信息删除并更新ListView。
2022-11-16 13:32:14
1000
原创 Scala函数式编程初步(高阶函数)
定义一个参数是函数的函数。(完整定义=>匿名函数)可以看到res1和res11的含义是一样的。我们可以将匿名函数的参数简化:(缺省类型)更进一步用老师的话来说,化简到没学过就看不懂的地步就到位了。确实,没学过确实看不懂_+_原来就是x+y这么个函数的意思。
2022-11-15 20:18:26
207
原创 Android移动应用开发之使用room实现数据库的增删改查
我们直接开门见山,展示一下效果:数据库的插入和查询:数据库的修改和查询:可以看到id为23的数据发生了修改。删除一条数据:可以看到id为23的数据被删除了删除全部数据:可以看到,数据全都被删除了。Android移动应用开发之使用room实现数据库的增删改查注意:因为设置表的id是主键且自增,因此插入数据id就会持续增加,因为修改和删除都是在MainActivity中手动设置的,是个比较简单的demo,如果需要看到修改和条件删除的效果修改此处的setId中的参数即可。
2022-11-15 19:32:59
2842
原创 机器学习之朴素贝叶斯分类
其实也是很好理解的,就比如一组训练数据,我们先计算出好瓜并且色泽青绿的概率、好瓜并且根蒂蜷缩的概率、坏瓜并且色泽青绿的概率…根据已有的数据,我们能够得到一组概率值,那么基于此,我们其实就已经得到了朴素贝叶斯分类器了,因为当我们得到一组新的测试数据的时候,我们只需要看数据色泽、根蒂等特征是符合好瓜里的概率大还是坏瓜里的概率大就能够做出判断了。看到这里可以回味一下,朴素贝叶斯其实思路很简单,就是类别中哪些特征出现的概率大,那么当测试数据属于这些特征时,计算出是这类的概率就会大了,就达到分类的效果了。
2022-11-14 18:50:27
911
原创 论文阅读之Discrete Opinion Tree Induction for Aspect-based Sentiment Analysis
我感觉,如果论文里的公式读不懂,那其实文章就是没看明白(虽然我感觉自己其实也并没有看的很明白,但是还是得讲一讲,万一可以抛砖引玉呢)这就是模型图了,大概看看,意思差不多就是,句子用Bert编码,然后通过强化学习训练意见树,然后意见树用GCN编码,获得树的结构特征,然后和句子和方面词的编码进行特征融合,最后进行分类。粗粗说来,确实感觉挺简单的,但是想要了解每一步咋做的,还是需要仔细阅读,花点心思的。x 表示一句话,x = w1w2…wn其中w就是表示单个词。
2022-11-13 14:00:43
1052
3
原创 Android移动应用开发之对话框的一些使用
主要是感觉以后可能用到,记录一下//普通对话框 final int LIST_DIALOG = 2;//列表对话框 final int LIST_DIALOG_SINGLE = 3;//单选 final int LIST_DIALOG_MULTIPLE = 4;//多选 final int PROGRESS_DIALOG = 5;//进度条 final int DATE_DIALOG = 6;//日期 final int TIME_DIALOG = 7;
2022-11-09 16:20:16
643
原创 Android移动应用开发之登录用户密码记住及创建数据库存储查询用户名密码
这篇文章主要是实现上示功能。首先创建数据库(只能创建一次)然后输入用户名密码,店家注册,将数据插入数据库点击记住密码能够在下次登录时自动输入用户名密码最后点击登录能够进入登录界面。ps:这里有个bug就是得注册两次才能生效,不太理解哪里有问题了,以后知道了再来补…
2022-11-09 15:34:27
2751
原创 论文阅读之Enhancing Transformer with Sememe Knowledge(2020)
读了这篇文章,大概知道义原的用法了,使用义原的精髓应该就是能够考虑义原embedding的训练吧。
2022-11-06 21:23:06
765
10
原创 论文阅读之Improved Word Representation Learning with Sememes(2017)
义原是词义的最小语义单位,每个词义的意义通常由若干个义原组成。由于每个单词的义原并不明确,人们手动注释单词义原并形成语言常识知识库。文章提出词义原信息可以改进词表示学习(WRL),它将词映射到低维语义空间,并作为许多 NLP 任务的基本步骤。关键思想是利用词义原准确地捕捉特定上下文中词的确切含义。文章遵循 Skip-gram 的框架并提出了三个义原编码模型来学习义原、意义和单词的表示,并应用注意力方案来检测各种上下文中的词义。文章对包括单词相似性和单词类比在内的两项任务进行了实验,我们的模型明显优于基线。
2022-11-05 16:54:03
626
1
原创 论文阅读之RETHINKING POSITIONAL ENCODING IN LANGUAGE PRE-TRAINING
这篇文章的联合位置编码,发现其实并不复杂,就是去掉了两项无关项,给[CLS]相关的单独开了两组权重计算位置编码,然后加上相对位置编码。不过分析的过程是满详细的,可视化展示也是很不错,总结的也不错,主要是会感觉附带了一些思考的过程,让你觉得这文章说的确实有道理,最后结果也是好的,因此我感觉这是一篇很不错的文章。
2022-11-02 16:49:57
1250
2
原创 正则化之L1和L2以及dropout的一些理解和pytorch代码实现与效果证明
正则化主要解决模型过拟合问题,主要是通过减小w的值,即模型的权重来缓解过拟合的。可以看这么一张图,需要一条曲线去拟合图上x的点。可以看到粉色的线将噪声点都考虑进去了,属于过拟合。绿色的线能够比较好的拟合点,是我们期望的模型。蓝色的线是一条直线,没学到什么大小,属于欠拟合我们使用手写数据集的数据:链接:https://pan.baidu.com/s/1nxISO_v-MhEyqin7qYqWZw?pwd=1111提取码:1111。
2022-10-29 16:42:50
2783
5
原创 拉格朗日对偶问题的一些介绍
还记得SVM里用到拉格朗日对偶,将有约束条件转换成无约束条件问题进行最优值求解,其实也只是会用这个方法而已,至于为啥能这么用,还是不知道的,接下来深入理解一下吧,也为了之后学习正则化做铺垫。
2022-10-26 15:50:22
1869
2
原创 学习笔记之信息量、熵、KL散度、交叉熵的一些介绍
那么放到神经网络中,当P为真实样本标签,Q为预测值的时候,我们就可以通过交叉熵来计算损失,从而进行反向传播,训练模型,从而使得预测值的Q与P的分布越来越近,从而达到比较好的一个效果。因此,如果我希望Q和P越接近,就是需要寻找交叉熵的最小值就行了,因为后面的式子是恒定的(因为以P为基准了,可以认为P相当于真实值,那么我需要的就是调整Q去接近P)。这里取个-因为概率都是
2022-10-26 11:56:16
821
原创 pytorch之求梯度和nn.Linear的理解
假设有这么个简单的神经网络结构。这篇文章可以说是机器学习之神经网络的公式推导与python代码(手写+pytorch)实现补充。那么这个网络用pytorch如何实现呢?其中w1就相当于vij的系数矩阵w2就相当于wjk的系数矩阵然后forward就是进行正向传播计算。反向传播的话就是后面计算出损失后,调用backward一句话就好了。应该比手写简介且好理解吧。
2022-10-24 16:15:24
2628
原创 使用VScode创建ipynb文件选择kernel运行python代码
为什么会有这么一篇博客呢?因为我NPY用vscode跑不起来python代码…不过经过我的进行指导,已经学会了,相信大家也一定能看懂。
2022-10-21 22:58:08
16162
3
原创 机器学习之神经网络的公式推导与python代码(手写+pytorch)实现
因为要课上讲这东西,因此总结总结,发个博客模型图假设我们有这么一个神经网络,由输入层、一层隐藏层、输出层构成。(这里为了方便,不考虑偏置bias)输入特征为xn输入层与隐藏层连接的权重为vij隐藏层的输出(经过激活函数)为ym隐藏层与输出层连接的权重为wjk输出层的预测值(经过激活函数)为ol隐藏层和输出层后面都接sigmoid激活函数。感觉从推导到代码实现也是一个反复的过程,从推导发现代码写错了,写不出代码了就要去看看推导的过程,这个过程让我对反向传播有了较全面的理解。
2022-10-21 22:45:34
7813
26
原创 Investigating Typed Syntactic Dependencies for Targeted Sentiment Classification Using GAT(2020)
这篇论文主要的任务是方面级的情感预测:给定一个句子,然后预测文本里的某个词的情感是正向(positive)或是负向(negative)或是中立(netural)。例如:“I like the food here, but the service is terrible.” 里面的food是positive,service则是negative。
2022-10-19 14:35:59
534
原创 深度学习基础之BatchNorm和LayerNorm
batch norm适用于CV,因为计算机视觉喂入的数据都是像素点,可以说数据点与点之间是可以比较的,所以使用batch norm可以有比较好的效果,而NLP里,每个词的词向量是一组向量表示一个词,一个词向量割裂开来看是没有意义的,因此不同词向量里的数据点是不能混为一谈的,所以batch norm之后可能会使得词损失语义,效果就可能不好了,但是使用layer norm只是让各个词向量进行标准化,就能够有比较理想的效果了。
2022-10-18 20:41:37
5604
3
前端实战之个人博客页面的涉及与开发
2023-01-05
Python实战之基于BP神经网络的通信运营商数据分析实例
2023-01-05
Android移动应用开发之使用ListView+SQLiteOpenHelper实现商品列表添加删除的界面
2022-11-16
机器学习之朴素贝叶斯分类+拉普拉斯平滑
2022-11-14
Matlab中pca降维并实现综合评价的实现
2022-11-12
机器学习之神经网络的公式推导与python代码(手写+pytorch)实现
2022-11-09
Android移动应用开发之登录用户密码记住,创建数据库存储查询密码
2022-11-09
Android移动应用开发之对话框Dialog的一些使用
2022-11-09
fragment与Activity通过接口进行数据传输
2022-10-07
Fragment动态添加与管理demo
2022-10-07
嵌入式接口之GPIO驱动LED的实验(附完整代码和工程)
2022-06-19
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅