《中国科学:信息科学》文本分析技术最新进展总结盘点

[1]余开文,樊仁和,苟文龙,等.面向语义通信网络的能效跨层优化[J/OL].中国科学:信息科学,1-19[2024-05-16].http://kns.cnki.net/kcms/detail/11.5846.tp.20240411.1017.010.html.    

关键词:资源分配;;语义通信;;语义感知网络;;能量效率;;多智能体强化学习    

摘要:语义通信关注传输信息的内在含义,通过语义提取可显著减少需要传输的数据量,提高通信效率,在未来智能设备通信场景中展现出巨大的潜力.然而,深度学习使能的语义编解码进一步加剧传统通信的能量消耗.针对该问题,本文提出一种联合跨层优化框架,并设计了一种语义能效指标来评估用户的体验质量和全局系统的能量损耗.将该优化过程建模为部分可观测的马尔可夫过程,联合优化物理层中的功率控制和语义层中的语义压缩配置:功率分配用于消除小区间干扰,语义压缩等级配置用于优化语义传输效率.仿真结果表明,所提框架和算法能够有效解决语义层和物理层的联合优化问题.


[2]兰猛,张乐飞,杜博,等.基于时空层级查询的指代视频目标分割[J].中国科学:信息科学,2024,54(03):674-691.    

关键词:指代视频目标分割;;时空一致性建模;;时空特征学习;;跨模态特征交互;;Transformer  

摘要: 本文针对当前指代视频目标分割方法缺乏目标时空一致性建模和目标时空表征学习不足等问题,进行了深入的研究,提出了基于时空层级查询的指代视频目标分割方法 (STHQ).本文将指代视频目标分割看作基于查询的序列预测问题,并提出两级查询机制进行目标的时空一致性建模和时空特征学习.在第1阶段,本文提出了帧级空间信息提取模块,该模块使用语言特征作为查询独立地和视频序列中的每一帧在空间维度进行信息交互,生成包含目标空间信息的实例嵌入;在第2阶段,本文提出时空信息聚合模块,该模块使用视频级的可学习查询嵌入和第1阶段生成的实例嵌入在时空维度进行信息交互,生成具有时空表征信息的视频级实例嵌入;最后,视频级实例嵌入线性变换为条件卷积参数,并和视频序列中的每一帧进行卷积操作,生成目标的掩码预测序列.在该领域的3个基准数据集上的实验结果表明,本文提出的STHQ方法超越了现有的方法,实现了最佳的性能.


[3]朱磊,李京智,王天时,等.联邦无监督跨模态哈希[J].中国科学:信息科学,2023,53(11):2180-2201.  

关键词:联邦学习;;多模态学习;;无监督学习;;跨模态检索;;无监督跨模态哈希    

摘要:联邦跨模态检索利用分散的客户端学习一个共享跨模态检索模型,从而降低集中大规模多模态训练数据时高昂的维护成本,解决分布式数据存储场景下跨模态检索中存在的数据隐私问题.然而现有的联邦跨模态检索方法大多依赖于大量的语义标注,这限制了检索模型在大规模应用场景下的扩展性.与之不同,本文提出一种无监督的联邦跨模态哈希检索模型,旨在保护客户端数据隐私的前提下,学习不依赖语义标注的跨模态检索模型.由于联邦环境中多模态数据分布不平衡,局部信息不足以让模型学习到整体数据上的模态间相似性,从而影响检索性能.为解决此问题,本文提出一个全局–局部模态间对比正则化方法,通过使用不同模态的全局哈希模型对单个模态的局部哈希模型进行约束,使局部哈希模型能够充分感知整体数据的相似性语义,从而加强对本地跨模态哈希学习过程的引导.同时,本文引入一种全局–局部模态内知识蒸馏策略来进一步地获取模态内特有的全局知识.5个基准跨模态检索数据集上的实验结果验证了本文提出方法的有效性.


[4]车万翔,窦志成,冯岩松,等.大模型时代的自然语言处理:挑战、机遇与发展[J].中国科学:信息科学,2023,53(09):1645-1687.    

关键词:ChatGPT;;对话式大模型;;大型语言模型;;自然语言处理;;通用人工智能    

摘要:近期发布的ChatGPT和GPT-4等大型语言模型,不仅能高质量完成自然语言生成任务,生成流畅通顺,贴合人类需求的语言,而且具备以生成式框架完成各种开放域自然语言理解任务的能力.在少样本、零样本场景下,大模型可取得接近乃至达到传统监督学习方法的性能,且具有较强的领域泛化性,从而对传统自然语言核心任务产生了巨大的冲击和影响.本文就大模型对自然语言处理的影响进行了详细的调研和分析,试图探究大模型对自然语言处理核心任务带来哪些挑战和机遇,探讨大模型将加强哪些自然语言处理共性问题的研究热度,展望大模型和自然语言处理技术的未来发展趋势和应用.分析结果表明,大模型时代的自然语言处理依然大有可为.我们不仅可以将大模型作为研究方法和手段,学习、借鉴大型语言模型的特点和优势,变革自然语言处理的主流研究范式,对分散独立的自然语言处理任务进行整合,进一步提升自然语言核心任务的能力;还可就可解释性、公平性、安全性、信息准确性等共性问题开展深入研究,促进大模型能力和服务质量的提升.未来,以大模型作为基座,拓展其感知、计算、推理、交互和控制能力,自然语言处理技术将进一步助力通用人工智能的发展,促进各行各业的生产力进步,更好地为人类社会服务.


[5]吴震,戴新宇.基于语法和语义分割的跨领域方面级情感分类[J].中国科学:信息科学,2023,53(07):1299-1313.    

关键词:方面级情感分类;;跨领域;;神经网络;;注意力;;语法和语义    

摘要:神经网络在方面级情感分类任务上已经取得了良好的性能.然而,由于复杂且耗时的数据标注流程,方面级情感分类在很多领域上是低资源甚至是零资源的,这限制了该任务在实际场景中的应用.为了解决这个挑战性的问题,本文关注跨领域的方面级情感分类,并提出一种基于语法和语义分割的跨领域方面情感分类方法.具体而言,针对不同领域用词差异造成的领域漂移和注意力泛化问题,本文首次提出利用单纯的语法信息来获取可在领域之间迁移的语法注意力,并引入与目标领域相近的文档情感分类任务来增强神经网络模型对目标领域的情感识别能力,最终从语法和语义两个层面分别提升模型的注意力机制和文本上下文表示.实验在6个跨领域方面级情感分类任务上进行,结果表明,与其他9种基线方法相比,本文的方法在6个任务上都取得了最先进的性能,在平均准确率和平均macro-F1两个指标上比之前最好的模型DIFD分别提升7.14%和7.6%.此外,即使以大规模预训练模型BERT, BERT-ADA, RoBERTa等作为骨干网络,本文的方法仍能实现3.5%以上的平均准确率提升和平均macro-F1提升.


[6]徐凡,李明昊,黄琪,等.知识图谱驱动的图卷积神经网络谣言检测模型[J].中国科学:信息科学,2023,53(04):663-681.    

关键词:语言知识;;世界知识;;主题模型;;图卷积神经网络;;谣言检测    

摘要:社交媒体谣言以极低的成本在互联网中被快速扩散,给社会带来显著的负面影响.传统的谣言检测模型主要考虑传播模式、写作风格、用户信用和世界知识等信息.然而,谣言的传播模式通常难以被捕捉,写作风格却容易被模仿,由元数据(如职业、家乡、学历、年龄等)构成的用户信息也容易被伪造.本文提出了一种新颖的知识驱动的图卷积神经网络谣言检测模型.该模型首先将社交媒体文本表示成一种语义–实体无向图结构,其中节点包含原社交媒体文本中的词语,利用世界知识库扩展的实体词语,以及利用语言知识库扩展的语义词语,边包含三类节点的6种有效组合.该语义–实体图可以有效地增强任意两种节点的共现性,从而丰富了原社交媒体文本的表示,从一定程度上缓解数据稀疏共现问题.语言知识利用了HowNet (义原和同义词)以及WordNet (上义词、下义词和同义词)分别对中英文社交媒体文本的主题词进行扩充.并成功地将语言知识和实体知识通过图卷积神经网络框架有效集成.在4个国际基准中英文谣言语料库上的实验结果和可视化分析表明了本文模型的有效性.


[7]卞嘉楠,冒泽慧,姜斌,等.基于知识图谱和多任务学习的工业生产关键设备故障诊断方法[J].中国科学:信息科学,2023,53(04):699-714.    

关键词:故障诊断;;知识图谱;;多任务学习;;工业生产关键设备;;推荐系统    

摘要:针对工业生产关键设备故障数据稀疏的问题和故障诊断的需求,本文提出了一种基于知识图谱和多任务学习的工业生产关键设备故障诊断模型MKFD (multi-task learning for knowledge graphenhanced fault diagnosis),通过对故障根因的推断实现故障诊断.设计了多任务学习框架,并构造了一种改进十字绣单元用于实现框架内子任务之间的信息共享.利用运维数据构建故障现象–故障根因关联矩阵,使用多层感知机搭建知识图谱嵌入模型;分别将关联矩阵嵌入和知识图谱嵌入作为多任务学习框架中的两个子任务,通过子任务的交替学习,优化MKFD模型参数,实现对故障根因的推断,从而达到故障诊断的目的.最后,基于国内某工业企业的运维数据所构建的两个工业生产关键设备故障知识图谱对上述方案进行了验证实验,结果证明所提出的方法具有良好的性能.


[8]李学龙.多模态认知计算[J].中国科学:信息科学,2023,53(01):1-32.    

关键词:人工智能;;多模态;;认知计算;;联觉;;信容    

摘要:人类利用视觉、听觉等多种感官理解周围环境,通过整合多种感知模态,形成对事件的整体认识.为使机器更好地模仿人类的认知能力,多模态认知计算模拟人类的“联觉”(synaesthesia),探索图像、视频、文本、语音等多模态输入的高效感知与综合理解手段,是人工智能领域的重要研究内容,也是实现“通用人工智能”的关键之一.近年来,随着多模态时空数据的海量爆发和计算能力的快速提升,国内外学者提出了大量方法,以应对日益增长的多样化需求.然而,当前的多模态认知计算仍局限于人类表观能力的模仿,缺乏认知层面的理论依据.本文从信息论角度出发,建立了认知过程的信息传递模型,结合信容(information capacity),提出了多模态认知计算能够提高机器的信息提取能力这一观点,从理论上对多模态认知计算各项任务进行了统一.进而,根据机器对多模态信息的认知模式,从多模态关联、跨模态生成和多模态协同这3个方面对现有方法进行了梳理与总结,系统地分析了其中的关键问题与解决方案.最后,结合当前阶段人工智能的发展特点,重点思考多模态认知计算领域面临的难点与挑战,并对未来发展趋势进行了深入分析与展望.


[9]罗妹秋,张春霞,彭成,等.基于解析图嵌入和加权图卷积网络的知识图谱补全[J].中国科学:信息科学,2022,52(11):2037-2057.    

关键词:知识图谱补全;;解析图嵌入;;加权图卷积网络;;语义依存分析;;实体表示学习  

摘要: 知识图谱补全是知识图谱构建、自然语言处理和知识工程等领域的重要研究课题.知识图谱不仅是实现通用领域和专业领域精准知识服务的知识支撑,而且是信息检索、问答交互和信息推荐等领域取得突破性进展的必要基础.知识图谱的低质量和小规模是阻碍知识图谱广泛应用的主要瓶颈.知识图谱补全的目的是构建大规模高质量的知识图谱,以不断更新和扩充知识图谱.针对现有知识图谱补全方法难以从非结构化文本等辅助信息中提取深层次语义特征的问题,本文提出一种基于解析图嵌入和加权图卷积网络的知识图谱补全方法.一方面,该方法通过加权图卷积网络,对实体描述文本的语义依存分析进行建模,构建语义依存解析图嵌入;另一方面,引入了实体描述文本的多粒度句嵌入生成方法,旨在于构建能够捕获多粒度语义、深层次语义特征的实体表示学习.通过在两个公开数据集上的实验结果表明了本文知识图谱补全方法优于现有方法,验证了本文方法的有效性和优越性.


[10]王少楠,丁鼐,林楠,等.语言认知与语言计算——人与机器的语言理解[J].中国科学:信息科学,2022,52(10):1748-1774.    

关键词:语言认知;;语言计算;;人的语言理解;;机器的语言理解;;交叉研究    

摘要:语言理解是认知科学和计算机科学交叉领域共同关心的问题,但两个学科在选择具体研究问题时却十分不同.认知科学领域的研究侧重解析大脑的工作机制,更多地关注于描述大脑对语言的响应,缺乏对大脑语言功能整体化、系统化的研究,而计算机科学家在选择研究问题时重点关注实际应用效能,往往忽略了对语言最本质规律的研究.那么,如何实现两种思路的交叉融合,为智能语言计算模型的构建和语言认知机理的研究带来新的机遇和启发呢?本文首先简要回顾了认知科学和计算机科学在语言理解方向上的研究问题、发展历程和研究方法,重点阐述研究现状和面临的挑战,之后对比认知科学和计算机科学领域对于语言理解问题的主要观点,分析两者之间的异同.最后对现有语言认知和语言计算两个领域的交叉融合方法进行归纳和总结,并对未来发展趋势予以展望.


[11]鲍宇,黄书剑,周浩,等.基于句法模板采样的无监督复述生成方法[J].中国科学:信息科学,2022,52(10):1808-1821.    

关键词:无监督复述;;变分自编码器;;句法结构;;采样    

摘要:文本复述可以辅助机器翻译、智能问答、文本分类等任务,是非常重要的自然语言处理任务.近年来,一些研究探索了基于结构变换的文本复述,从无监督学习的概率化表示空间中采样多个句法表示并生成多个复述.然而,通过后验分布采样句法表示生成的复述往往高度相似,缺乏多样性;另一方面,从先验分布采样句法表示又难以保证与给定的语义表示相匹配,导致生成的复述质量欠佳.本文提出了基于句法模板的文本复述模型,引入了句法模板隐变量建立语义空间和句法空间的联系,并进一步提出了两步采样策略:(1)使用先验分布采样句法模板,使得采样的句法表示更加多样化;(2)使用后验分布采样句法表示,以确保句法表示与语义表示的匹配.实验表明,两步采样策略有效地结合了先验采样和后验采样的优势,生成的文本复述可以在具备良好生成质量的同时保持着更好的多样性,取得了当前最佳的复述性能.


[12]王锦荟,金露,李泽超,等.基于知识蒸馏的跨模态哈希[J].中国科学:技术科学,2022,52(05):713-726.    

关键词:哈希;;跨模态检索;;知识蒸馏;;Transformer    

摘要:由于计算和存储的高效性,哈希被广泛地用于大规模跨模态检索.现有跨模态哈希方法分别对单模态数据生成哈希码,忽略了模态内和模态间的上下文信息,无法充分挖掘多媒体数据的潜在关联信息.为此,本文提出一种基于知识蒸馏的跨模态哈希方法.该方法首先利用基于Transformer的教师网络从图像和文本数据中捕获模态内和模态间的上下文信息,进而得到包含丰富视觉-语义关联信息的联合表示,并将联合表示投影到低维的汉明空间以得到判别性较高的二值哈希码.此外,该方法利用知识蒸馏技术将教师网络学到的多模态数据潜在关联信息迁移到学生网络,从而让学生网络生成的哈希码最大程度保留多模态关联信息.该方法在MIRFLICKR-25K,NUS-WIDE和MS-COCO数据集上进行验证,实验结果表明该方法的跨模态检索性能优于目前的主流方法.


[13]赵才荣,齐鼎,窦曙光,等.智能视频监控关键技术:行人再识别研究综述[J].中国科学:信息科学,2021,51(12):1979-2015.    

关键词:行人再识别;;智能视频分析;;深度学习;;表征学习;;度量学习    

摘要:行人再识别(person re-identification, ReID)旨在解决跨摄像头跨场景下目标行人的关联与匹配,作为智能视频监控系统的关键环节,对维护社会公共秩序具有重大作用.为了深入了解行人再识别研究现状和加速推进国内行人再识别相关研究及技术落地,本文对该领域国家自然科学基金申报数量、资助力度以及地理分布情况进行统计,并针对近年来发表在国际顶级会议和期刊上的行人再识别研究进行全面梳理.具体地,首先阐述一个标准行人再识别算法流程,并总结其中3个关键技术:表征学习、度量学习和重排序优化.随后,列举了实际开放场景中面临的主要难点与挑战,并据此概括了7种开放行人再识别任务:遮挡、无监督、半监督、跨模态、场景行人搜索、对抗鲁棒和快速检索.此外,本文整理了标准行人再识别和开放行人再识别的代表性数据集,并且对一些代表性行人再识别算法进行比较.最后本文对行人再识别的未来发展趋势进行展望.


[14]李志欣,凌锋,唐振军,等.基于多头注意力网络的无监督跨媒体哈希检索[J].中国科学:信息科学,2021,51(12):2053-2068.  

关键词: 卷积神经网络;;多头注意力网络;;跨媒体哈希检索;;无监督学习;;协同学习;;辅助相似度矩阵;;批量归一化    

摘要:跨媒体哈希检索将不同媒体数据编码到公共二值哈希空间中,从而可以有效地测量不同模态样本之间的相关性.为了进一步提高检索性能,提出基于多头注意力网络的无监督跨媒体哈希检索方法.首先,利用多头注意力网络生成哈希码矩阵,使图像和文本能获得更好的匹配.其次,构造一个辅助相似度矩阵,用以整合来自不同模态的原始邻域信息.通过辅助相似度矩阵与哈希码矩阵的协同学习,能够捕获不同模态之间和相同模态内部的潜在联系.此外,设计了两种损失函数训练网络模型,并使用批量归一化和更换哈希码生成函数的策略对模型进行优化,使模型的训练速度得到大幅提升.在3个数据集上的实验表明,本方法的平均性能比目前国际上先进的无监督方法有显著提升,充分证明了本方法的有效性和优越性.


[15]倪宣明,沈鑫圆,张海.基于联合分布核适配的迁移学习及其隐私保护[J].中国科学:信息科学,2021,51(10):1609-1624.    

关键词:迁移学习;;隐私保护;;分布适配;;谱学习;;差分隐私  

摘要:迁移学习利用不同但相关的源域标记数据来解决目标领域的学习问题,大多数减小域间分布差异的方法依赖于最大均值差异距离,但其仅仅能匹配域间数据分布的各阶矩.此外,隐私保护意识的增强限制了对数据源的访问,对迁移学习的发展提出了新的挑战.本文提出一种基于联合分布核适配的迁移学习及其隐私保护方法,直接在再生核希尔伯特空间中同时减小域间边缘分布和条件分布的差异,从而学习一个域不变核矩阵.此外,我们设置数据源双方首先访问一个相同的随机投影函数,然后聚合器发布基于目标扰动的差分隐私核分类器,在实现基于核的联合分布适配的同时,避免了数据源与聚合器直接共享原始特征数据.在多个文本和图像迁移学习基准数据集上进行了对比实验和参数分析,结果显示本文方法具有良好的有效性.


[16]周成虎,王华,王成善,等.大数据时代的地学知识图谱研究[J].中国科学:地球科学,2021,51(07):1070-1079.    

关键词:地学知识图谱;;全域地学知识表达模型;;联邦群智协同;;高精度地质时间轴  

摘要: 进入21世纪以来,地球科学研究正进入一个以建立新知识体系为核心和大数据驱动为手段的重大转折时期,从传统的百科全书式的学科知识体系到计算机可理解与可操作的知识图谱是地学知识研究的一次革命性跃迁.地学知识图谱在采纳一般知识表达的图模式基础上,拓展地学知识所特有的时空特征,融合图、文、数等地学要素,从而建立全域地学知识表达模型;发展联邦式群智协同地学知识图谱构建方法,协同全球地球科学家,实现高质量的专业知识图谱构建;发展基于深度解析的多模态地学数据动态知识图谱构建方法,从海量的地学文献资料中提取地学知识,实现最新、最全的动态地学知识图谱构建.全面而系统的地学知识图谱不仅可以深化现有的地学大数据分析,而且可以推进大数据驱动的高精度地质时间轴构建、规则与数据驱动的智能地图编制、地学知识演化与推理分析等研究,将进一步拓展数据与知识双重驱动的地学研究新方向,开辟地球科学、信息科学和数据科学交叉的新领域,实现地学研究的源头创新和时空大数据研究的重大理论突破.


[17]李学龙,赵斌.视频萃取[J].中国科学:信息科学,2021,51(05):695-734.    

关键词:视频萃取;;视觉表征;;视频摘要;;视频浓缩;;视频描述;;计算机视觉;;人工智能  

摘要: 视频数据是人们日常生活中最重要的信息载体之一.视频萃取(video distillation)通过研究视频数据的时空和语义特性,探索简洁高效的数据展示形式和信息感知模态,是计算机视觉和人工智能的重点研究内容.近年来,随着视频获取方式的快速革新和拍摄需求的多样化发展,视频数据的智能化分析任务面临着新的机遇与挑战,涌现出众多的视频萃取方法.本文创新性地从信息论的角度,解释了数据、信息和知识之间的关系,确立了视频萃取的核心是提高单位数据量的信息提供能力这一基本原则,并依据数据信容(information capacity)分析,从理论上对视频萃取中的各项任务进行了统一.进一步地,分类讨论了视频时空表征中的关键问题与解决方案,系统地分析了从内容、目标和语义角度进行视频萃取的方法,结合视频摘要、浓缩和描述任务,梳理出三条发展主线,展现了视频萃取的发展态势.更重要的是,本文对现有方法的优势与缺陷进行了深入的思考与讨论,指出了尚未解决的若干关键科学问题,并对解决方案进行了初步探讨.同时,本文对视频萃取研究所面临的挑战与未来发展趋势进行了系统的分析与展望.


[18]刘翀,杜军平,周南.一种基于对抗学习和语义相似度的社交网络跨媒体搜索方法[J].中国科学:信息科学,2021,51(05):779-794.    

关键词:跨媒体搜索;;对抗学习;;语义相似度;;社交网络;;搜索排序    

摘要:社交网络蕴含着丰富的多媒体信息,如何实现社交网络跨媒体信息的搜索已成为研究热点.基于深度学习的单一模态语义特征提取和学习在社交网络信息搜索上取得了较好的效果.在跨模态信息搜索时不同模态的数据特征不能直接比较,因此不同模态之间的语义鸿沟是亟待解决的关键问题.针对上述问题,本文提出了一种基于对抗学习和语义相似度的跨媒体搜索方法,实现了文本和图像之间的相互匹配、排序和搜索.该方法使用对抗学习方法框架构建训练特征映射网络和模态判别网络,其中特征映射网络使用多维语义分布向量将不同模态的数据映射到同一语义空间中,使得相同语义下的不同模态数据在该空间距离小,不同语义下相同模态数据距离大.使用语义分布及相似度作为特征映射网训练依据,模态判别网络负责判定空间中不同数据的模态.基于对抗学习交替训练两个网络,使得特征映射网络得到的数据和原数据语义一致,并消除模态特性,最终在同一空间内使用相似度来排序并得到搜索结果.实验结果表明本文提出的方法在文本和图像的相互搜索的map值比同类方法高,并验证了该方法在社交网络安全话题数据上的有效性.


[19]王军平,张文生,王勇飞,等.面向大数据领域的事理认知图谱构建与推断分析[J].中国科学:信息科学,2020,50(07):988-1002.    

关键词:工业大数据;;知识图谱;;事理认知;;人机行为演化分析  

摘要:随着大数据对全球生产、流通、分配、消费等国计民生领域产生重要影响,事理作为认知智能重要概念,不仅帮助人们发现大数据所蕴含的国计民生的线索与发展规律,而且帮助人们更好认知人机物三元世界未来发展趋势.考虑到人机物事理动态演化是工业大数据有别于其他行业大数据处理的本质区别,本文从人机物事理动态演化特性智能认知着手,结合传统知识图谱在互联网领域取得的成功经验,提出了面向大数据领域的事理认知图谱构建与推断分析.首先论述了事理认知图谱对推动认知智能研究发展的贡献,剖析了它与知识图谱异同之处,深度理解人类社会发展变化规律的重要价值.其次阐述了事理抽取与泛化、多模态联合网络化合成表示、进化认知和推断分析等关键技术研究最新进展以及面临的挑战.最后,结合我们课题组在事理认知图谱的研究进展情况,归纳总结了事理认知图谱在预防网络电话诈骗和安全生产管控等领域最新应用效果.本文结尾总结和展望事理认知图谱的未来研究方向和发展前景.


[20]杨一帆,马进,王海涛,等.基于简介文本的中文人物关系图谱属性补全与纠错[J].中国科学:信息科学,2020,50(07):1003-1018.  

关键词: 知识图谱;;人物关系图谱;;属性补全与纠错;;信息抽取    

摘要:一个准确丰富的人物关系图谱不仅能够为大众提供人物实体的清晰介绍和人物之间的相互关联,而且能够为智能服务系统提供有效的知识支持.目前大多知识来源均以百科类表格数据为起点,在此基础上构建知识图谱.本文主要描述如何充分利用百科类文本数据构建高质量的人物关系图谱.为解决表格数据中存在属性缺失和错误的问题,我们采用模式匹配和深度学习模型相结合的策略从文本数据中自动学习属性值,进行属性补全和纠错,有效提高了知识图谱的覆盖率和正确率.


[21]刘铭,郑子豪,秦兵,等.基于篇章级事件表示的文本相关度计算方法[J].中国科学:信息科学,2020,50(07):1033-1054.    

关键词:篇章事件连通图;;篇章级事件相关度;;文本排序;;关键子句筛选;;子句连通图    

摘要:随着网络信息的剧增,信息流服务备受用户关注.在信息流服务中,如何衡量文本之间的相关度进而从多来源的信息渠道中过滤掉冗余信息提升推荐满意度成为至关重要的环节.当前主流的文本相关度计算方法均是将文本表示为向量,进而通过衡量向量之间的相似度来度量文本间的相关度.然而,信息流中的文本多为新闻文本,这些文本的核心是其描述的事件,基于此需要从事件的角度挖掘文本的核心特征进而利用其计算文本间的相关度.当前针对事件的研究大多数着眼于句子级别.事实上,在计算文本相关度时,需要从篇章级别把握文章的内容.故此,篇章级的事件分析更有影响力.为此,本文在句子级事件抽取的基础上,提出了一种篇章级的事件表示方法,其利用句子级事件的抽取结果构建篇章事件连通图,并选取图中重要的节点作为篇章级事件的代表,之后利用篇章级的事件表示结果来度量文本之间的相关度.实验显示,本文提出的文本相关度计算方法要远好于传统的文本相关度计算方法.


[22]张雪英,张春菊,吴明光,等.顾及时空特征的地理知识图谱构建方法[J].中国科学:信息科学,2020,50(07):1019-1032.    

关键词:地理实体;;时空特征;;地理知识表达模型;;地理知识形式化;;地理知识图谱    

摘要:地理知识是人类对地理现象或事物空间分布、演变过程和相互作用规律的认知结果.当前大数据环境下的地理信息服务,普遍存在"数据海量、信息爆炸、知识难求"现象.地理知识图谱是一种利用语义网络对地理概念、实体及其相互关系进行形式化描述的知识系统,在地理知识理解、地学问题求解、时空预测决策等方面具有巨大的应用潜力.地理知识除了具有通用知识的内涵和特点之外,还具有特定的时空特征和地学机理特点.因此,地理知识图谱构建和应用既具有一定的通用性,同时具有一定的专业特殊性.本文结合地理知识的时空特征和知识图谱的表达形式,提出了一种顾及时空特征的地理知识图谱构建方法.首先,系统梳理了地理知识图谱构建的基本思路和技术流程,并简要阐述了地理知识获取、地理知识抽象与表达、地理知识组织与管理3个关键环节的主要研究内容及其进展.其次,从地理学回答的基本问题出发,对地理知识的内容特征进行概括和抽象,构建了涵盖"地理概念–地理实体–地理关系" 3个层次的地理知识表达模型,用于描述不同粒度地理知识语义单元的基本组成及其逻辑关系.最后,借鉴知识图谱采用的语义网络知识表示方法,提出了基于"过程–关系"的地理知识表示方法.该方法以时间和空间特征为基本条件,以地理实体的状态划分为基础,实现了地理实体演化过程以及复杂地理关系的形式化描述.本文的研究成果有效解决了融合时空间维度的地理知识结构化表达和形式表示问题,为地理知识获取、融合、推理与应用奠定了基础.同时,在地质、环境、气象等地学领域具有一定通用性,对地学知识服务的推进具有重要参考价值.


[23]王晓斐.古希腊文本与分析的严格化——对拉格朗日的数学史工作的探究(英文)[J].Chinese Annals of History of Science and Technology,2020,4(01):139-165.    

关键词:古希腊数学著作;;微积分史;;巴黎综合理工学院;;认识论价值;;分析严格化  

摘要: 本研究关注拉格朗日在数学史方面的兴趣及工作,并旨在澄清拉格朗日研究历史的意图。通过对不同史料的分析,首先,本文论述了拉格朗日在翻译和传播古希腊数学著作中所发挥的作用及其与欧几里得《几何原本》以及托勒密《至大论》的法文翻译者之间的联系和对他们的影响;其次,本文以新的角度并利用新的材料重申和强调了拉格朗日研究数学史的方式和动机;最后,以拉格朗日的微积分的历史书写为案例,本文阐明了历史在其数学工作中发挥的作用。本文的结论有以下几点:拉格朗日对历史研究的目的是从中获取其前人解决某一数学问题所使用的所有不同的方法,从而找出使其突破该问题的新的或合适的方法。因而,本文强调历史在拉格朗日的工作中所扮演的角色是其指导和方法论;同时,本文揭示了拉格朗日在其分析学著作中追求的四项认识论价值,即一般性、简单性、清晰性和严格性,并且说明这些价值是作为其发现合适的微积分方法所秉持的标准。因而在这一意义上,拉格朗日早于柯西已然展开了数学分析的严格化。这一工作亦是与其对古希腊数学著作的兴趣有联系的,因为他声明并试图在其分析著作中引入古希腊证明中的严格性。


[24]陈卓,杜昊,吴雨菲,等.基于视觉–文本关系对齐的跨模态视频片段检索[J].中国科学:信息科学,2020,50(06):862-876.  

关键词: 关系对齐;;语言关系;;视觉关系;;图卷积网络;;跨模态视频片段检索    

摘要:近年来,视频数据资源的日益丰富催生了一系列对于视频片段精细检索的需求.在这样的背景下,对于跨模态视频片段检索的研究逐渐兴起,其旨在根据输入的查询文本,输出一段视频中符合文本描述的片段.现有的研究工作主要关注于查询文本与视频片段的全局或局部的特征表达,而忽略了查询文本与视频片段中所蕴含的语义关系在跨模态检索中的匹配.例如,给定查询文本"一个人在打篮球"时,现有检索系统将根据整个查询文本和的视频的特征,或者关注于文本与视频中所表现的实体(如"人","篮球")来计算合适的视频片段,而缺乏对于"人打篮球"这类语义关系的考虑.因此,它们将难以辨别语义关系上的不同,从而限制了检索质量的提升.为了解决这个问题,本文提出跨模态关系对齐的图卷积框架CrossGraphAlign,通过分别构建文本关系图(textural relationship graph)与视觉关系图(visual relationship graph)来建模查询文本与视频片段中的语义关系,再通过跨模态对齐的图卷积网络来评估文本关系与视觉关系的相似度,从而帮助构建更加精准的视频片段检索系统.在公开的跨模态视频片段检索数据集TACoS和ActivityNet Captions上的实验结果表明,本文提出的方法可以有效地利用语义关系来提升跨模态视频片段检索的召回率.


 


[25]陈长建,姜流,雷娜,等.基于众包学习的交互式特征选择方法[J].中国科学:信息科学,2020,50(06):794-812.    

关键词:集成特征选择;;众包学习;;可视分析;;交互式可视化;;排序可视化    

摘要:集成特征选择算法将多种特征选择方法结果结合在一起,旨在得到更加有效的特征子集.然而这些算法通常假设每种特征选择方法是平等的,没有考虑不同特征选择方法性能的差异性,导致少数方法选择出的有效特征被忽略.为解决这一问题,本文提出一种可以有效地结合不同特征选择方法优势,并利用专家的知识逐步改善所选特征的交互式特征选择方法.该方法包括一个基于众包学习的集成特征选择算法和一个基于该算法开发的可视分析系统.基于众包学习的集成特征选择算法利用众包学习模型对不同特征选择方法的性能进行建模,计算每种方法的可靠性,并在此基础上将这些方法的结果有机融合.可视分析系统提供了丰富的排序方式,帮助专家理解单个特征选择方法的特征选择结果和特征在分类任务中所起的作用,从而让专家交互迭代地改善现有特征子集.在4个真实世界数据集上的数值实验表明,相比于现有的集成特征选择算法,本文提出的算法能够带来0.63%~2.85%分类准确率的提升.此外,在文本和图像数据集上进行的两个案例分析表明,本文提出的可视分析系统能够进一步带来0.28%~5.24%的分类准确率提升.


[26]刘庆霞,程龚,瞿裕忠.一种高可读低冗余实体摘要的生成方法[J].中国科学:信息科学,2020,50(06):845-861.    

关键词:知识图谱;;实体摘要;;冗余性;;可读性;;组合优化    

摘要:随着万维网的发展,知识图谱数据大量增长,并在面向智能应用的研究中受到广泛关注.知识图谱用RDF (resource description framework)三元组描述实体相关的事实.在知识图谱中,关于一个实体的描述可能包含大量三元组,在一些需要直接呈现实体信息的应用中,为了避免用户信息过载,并适应有限的呈现空间,就需要进行实体摘要.实体摘要任务是从实体描述的众多三元组中选出最有代表性的子集作为摘要,以呈现给用户阅读.本文提出一种新的实体摘要方法 ESSTER以生成具备高可读性和低冗余性的实体摘要.该方法结合三元组的结构与文本特征,基于结构特性度量知识图谱中三元组的重要性,基于N元语法和文本语料度量三元组的可读性,基于逻辑推理、数值比较和文本相似判断三元组间的冗余关系.综合这3种技术要素,将实体摘要问题建模为组合优化问题进行求解.本文在两个由人工标注的公开数据集上与6种现有方法进行了对比实验,结果表明本文提出的方法效果达到了当前最佳水平.


[27]陈俊洁,胡文翔,郝丹,等.一种静态的编译器重复缺陷报告识别方法[J].中国科学:信息科学,2019,49(10):1283-1298.    

关键词:编译器调试;;编译器缺陷报告;;重复缺陷报告;;数据流分析;;静态方法    

摘要:编译器缺陷报告在编译器质量保证中具有重要作用,而重复缺陷报告往往带来不必要的人力、时间等资源浪费.为了识别编译器重复缺陷报告,本文提出了一种静态的重复缺陷报告识别方法IdenDup.该方法可以有效解决两个场景下的重复缺陷报告问题,即模糊测试(fuzz testing)所产生的缺陷报告和缺陷管理系统中不同来源的缺陷报告.具体来说, IdenDup利用缺陷报告中静态文本和程序特征来识别重复缺陷报告,其中程序特征包括程序词法、语法,以及本文首次提出的数据流特征.特别地,程序数据流特征指的是程序中变量使用路径(变量使用方式及使用方式的顺序)特征.之后,我们使用C语言的两个主流编译器GCC和LLVM作为实验对象,对IdenDup的效果进行了实验探究.实验结果表明, IdenDup可以有效地识别上述两个场景下的重复缺陷报告,并且超过已有方法.


[28]冀中,汪浩然,于云龙,等.零样本图像分类综述:十年进展[J].中国科学:信息科学,2019,49(10):1299-1320.    

关键词:零样本图像分类;;属性;;词向量;;跨模态映射;;领域适应学习    

摘要:零样本图像分类指训练集和测试集在数据的类别上没有交集的情况下进行图像分类.该技术是解决类别标签缺失问题的一种有效手段,因此受到了日益广泛的关注.自提出此问题至今,零样本图像分类的研究已经大致有十年时间.本文系统地对过去十年中零样本图像分类技术的研究进展进行了综述,主要包括以下4个方面.首先介绍零样本图像分类技术的研究意义及其应用价值,然后重点总结和归纳零样本图像分类的发展过程和研究现状,接下来介绍常用的数据集和评价准则,以及与零样本学习相关的技术的区别和联系,最后分析有待深入研究的热点与难点问题,并对未来的发展趋势进行了展望.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值