数模打卡第四天–线性回归
一元线性回归
定义
一元线性回归分析预测法,是根据自变量x和因变量Y的相关关系,建立x与Y的线性回归方程进行预测的方法。由于市场现象一般是受多种因素的影响,而并不是仅仅受一个因素的影响。所以应用一元线性回归分析预测法,必须对影响市场现象的多种因素做全面分析。只有当诸多的影响因素中,确实存在一个对因变量影响作用明显高于其他因素的变量,才能将它作为自变量,应用一元相关回归分析市场预测法进行预测。
模型
例题
数据:
x=[6,8,10,14,18];
y=[7,9,13,17.5,18];
matlab代码如下:
x=[6,8,10,14,18];
y=[7,9,13,17.5,18];
N=length(x);%求取x向量的长度
for i=1:N
plot(x(i),y(i),'or');
hold on
end
运行结果:
从视觉上直观的看出x和y呈现线性关系。则我们可以通过matlab求出相关系数
[p,s]=polyfit(x,y,1)%代码中“1”为拟合的阶数
求得结果:
则函数表达式为:y=0.9763*x+1.9655
若某些题中数据画出来的散点图不是线性关系,我们可以通过一些变形(例如取对数)将其变形为线性关系,然后再次进行线性回归。
多元回归
定义
社会经济现象的变化往往受到多个因素的影响,因此,一般要进行多元回归分析,我们把包括两个或两个以上自变量的回归称为多元线性回归。多元线性回归的基本原理和基本计算过程与一元线性回归相同,但由于自变量个数多,计算相当麻烦,一般在实际中应用时都要借助统计软件。
模型
例题
“题中本来有29组数据,为了方便输入数据,这里作者将其改为10组数据”
要求:建立多元线性关系
这里我们需要用到多元线性回归的函数regress
代码如下:
%开始多元回归
clear all
clc
x1=[54.89,72.49,53.81,64.74,58.80,43.67,54.89,86.12,60.35,54.04];
x2=[30.86,42.61,52.86,39.18,37.67,26.18,30.86,43.79,38.20,34.23];
x3=[448.70,467.30,425.61,469.80,456.55,395.78,448.70,440.13,394.40,405.60];
x4=[0.012,0.008,0.004,0.005,0.012,0.001,0.012,0.017,0.001,0.008];
x5=[1.010,1.640,1.220,1.220,1.010,0.594,1.010,1.770,1.440,1.300];
y=[13.50,13.00,13.75,14.00,14.25,12.75,12.50,12.25,12.00,11.75];
save data x1 x2 x3 x4 x5 y%保存数据
load data %取出数据
y=[y'];
x=[ones(size(x1')),x1',x2',x3',x4',x5'];
[b,bint,r,rint,stats]=regress(y,x)
运行结果为:
运算结果为:y=3.5401+0.0241x1+0.0744x2+0.0204x3-29.6742x4-2.8212*x5.
regrss函数返回值中b矩阵为系数