最简单二分模板(学会这个模板,秒a二分题)

本文介绍了一种在排序数组中查找特定元素起始与终止位置的二分查找算法,通过两个不同的二分查找模板实现左边界和右边界定位,达到O(logn)的时间复杂度。

最简单的二分模板:

        这里引用leetcode 34.在排序数组中查找元素的第一个和最后一个位置

        题意

        

给定一个按照升序排列的整数数组 nums,和一个目标值 target。找出给定目标值在数组中的开始位置和结束位置。

如果数组中不存在目标值 target,返回 [-1, -1]。

进阶:

你可以设计并实现时间复杂度为 O(log n) 的算法解决此问题吗?

示例 1:

输入:nums = [5,7,7,8,8,10], target = 8

输出:[3,4]

示例 2:

输入:nums = [5,7,7,8,8,10], target = 6

输出:[-1,-1]

示例 3:

输入:nums = [], target = 0

输出:[-1,-1]

        分析:因为是排序数组,所以可以利用二分logn时间复杂度算法解决此题,给出了target,我们只需要找到第一次出现的位置(左边界),最后一次出现的文职(有边界)。

        先给出代码:

        

class Solution {
    public int[] searchRange(int[] nums, int target) {
        int n = nums.length;
        if(n == 0) return new int[]{-1,-1};
        int[] res = new int[2];
        int l = 0, r = n-1;
        //查找左边界
        while(l < r){
            int mid = l + r >> 1;
            if(nums[mid] >= target) r = mid;
            else l = mid + 1;
        }
        //先判断数组是否含有target,注意此时的l = r
        if(nums[l] == target){
            res[0] = l;
            //重置l,r,查找右边界
            l = 0; r = n-1;
            while(l < r){
                int mid = l + r + 1 >> 1;
                if(nums[mid] <= target) l = mid;
                else r = mid - 1; 
            }
            res[1] = l;
        }else //不含有target
            return new int[]{-1,-1}; 
        return res;
    }
}

这个代码模板的精髓在于 二分出来的结果 l,r是相等的

while(l < r){
    int mid = l + r >> 1;
    if(nums[mid] >= target) r = mid;
    else l = mid - 1;
}
while(l < r){
    int mid = l + r + 1 >> 1;
    if(nums[mid] <= target) l = mid;
    else r = mid + 1;
}

这两个模板区别在于 我们写l = mid 还是 r = mid 

 如果是l = mid 我们就要l + r + 1 向上取整

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

今天刷题了吗_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值