最简单的二分模板:
这里引用leetcode 34.在排序数组中查找元素的第一个和最后一个位置
题意
给定一个按照升序排列的整数数组 nums,和一个目标值 target。找出给定目标值在数组中的开始位置和结束位置。
如果数组中不存在目标值 target,返回 [-1, -1]。
进阶:
你可以设计并实现时间复杂度为 O(log n) 的算法解决此问题吗?
示例 1:
输入:nums = [5,7,7,8,8,10], target = 8
输出:[3,4]
示例 2:
输入:nums = [5,7,7,8,8,10], target = 6
输出:[-1,-1]
示例 3:
输入:nums = [], target = 0
输出:[-1,-1]
分析:因为是排序数组,所以可以利用二分logn时间复杂度算法解决此题,给出了target,我们只需要找到第一次出现的位置(左边界),最后一次出现的文职(有边界)。
先给出代码:
class Solution {
public int[] searchRange(int[] nums, int target) {
int n = nums.length;
if(n == 0) return new int[]{-1,-1};
int[] res = new int[2];
int l = 0, r = n-1;
//查找左边界
while(l < r){
int mid = l + r >> 1;
if(nums[mid] >= target) r = mid;
else l = mid + 1;
}
//先判断数组是否含有target,注意此时的l = r
if(nums[l] == target){
res[0] = l;
//重置l,r,查找右边界
l = 0; r = n-1;
while(l < r){
int mid = l + r + 1 >> 1;
if(nums[mid] <= target) l = mid;
else r = mid - 1;
}
res[1] = l;
}else //不含有target
return new int[]{-1,-1};
return res;
}
}
这个代码模板的精髓在于 二分出来的结果 l,r是相等的
while(l < r){
int mid = l + r >> 1;
if(nums[mid] >= target) r = mid;
else l = mid - 1;
}
while(l < r){
int mid = l + r + 1 >> 1;
if(nums[mid] <= target) l = mid;
else r = mid + 1;
}
这两个模板区别在于 我们写l = mid 还是 r = mid


如果是l = mid 我们就要l + r + 1 向上取整
本文介绍了一种在排序数组中查找特定元素起始与终止位置的二分查找算法,通过两个不同的二分查找模板实现左边界和右边界定位,达到O(logn)的时间复杂度。
4307

被折叠的 条评论
为什么被折叠?



