Numpy库学习
NumPy,是Numerical Python的简称,它是目前Python数值计算中最为重要的基础包。大多数计算包都提供了基于NumPy的科学函数功能,将NumPy的数组对象作为数据交换的通用语。
以下内容将会出现在NumPy中:
- ndarray——一种高效多维数组,提供了基于数组的便捷算术操作以及灵活的广播功能。
- 对所有数据进行快速的矩阵计算,而无须编写循环程序。
- 对硬盘中数组数据进行读写的工具,并对内存映射文件进行操作。
- 线性代数、随机数生成以及傅里叶变换功能。
- 用于连接NumPy到C、C++和FORTRAN语言类库的C语言API。
NumPy本身并不提供建模和科学函数
学习目标
- 在数据处理、清洗、构造子集、过滤、变换以及其他计算中进行快速的向量化计算。
- 常见的数组算法,比sort、unique以及set操作等。
- 高效的描述性统计和聚合/概述数据。
- 数据排列和相关数据操作,例如对异构数据进行merge和join。
- 使用数组表达式来表明条件逻辑,代替if-elif-else条件分支的循环。- 分组数据的操作(聚合、变换以及函数式操作)
ndarray:多维数组对象
NumPy的核心特征之一就是N-维数组对象——ndarray。ndarray是Python中一个快速、灵活的大型数据集容器。数组允许你使用类似于标量的操作语法在整块数据上进行数学计算。
- numpy的批量计算
下面是一个展现NumPy如何使用类似于Python内建对象的标量计算语法进行批量计算的小例子
In [1]: import numpy as np
In [2]: data = np.random.randn(2,3)
#生成一个小的随机数组
In [3]: data
Out[3]:
array([[-0.0421879 , -0.21588562, -0.52903881],
[-1.59346557, -1.19710799, -1.352975 ]])
In [4]: data*100
Out[4]:
array([[ -4.21878966, -21.58856219, -52.90388053],
[-159.34655725, -119.71079936, -135.29750021]])
#data数组内所有的元素都同时乘以了10
In [5]: data + data
Out[5]:
array([[-0.08437579, -0.43177124, -1.05807761],
[-3.18693115, -2.39421599, -2.70595 ]])
#数组中的对应元素进行了相加。
使用标准的NumPy导入方式import numpy as np。你当然也可以在代码中写from numpy import*来省略多写的一个np.然而建议你保持写标准导入的方式。numpy这个命名空间包含了大量与Python内建函数重名的函数(比如min和max)
- 数组的shape属性与数据类型
一个ndarray是一个通用的多维同类数据容器,也就是说,它包含的每一个元素均为相同类型。每一个数组都有一个shape属性,用来表征数组每一维度的数量;每一个数组都有一个dtype属性,用来描述数组的数据类型.
In [6]: data.shape
Out[6]: (2, 3)
In [7]: data.dtype
Out[7]: dtype('float64')
-
生成adarray
array函数接收任意的序列型对象(当然也包括其他的数组),生成一个新的包含传递数据的NumPy数组。例如:- 列表的转换
In [7]: data.dtype Out[7]: dtype('float64') In [8]: data1 = [5,7,4,8,7,0] In [9]: arr1 = np.array(data1) In [10]: arr1 Out[10]: array([5, 7, 4, 8, 7, 0])- 嵌套序列,例如同等长度的列表,将会自动转换成多维数组:
In [11]: data2 = [[65,6,75,8],[76,8,3,1]] In [12]: arr2 = np.array(data2) In [13]: arr2 Out[13]: array([[65, 6, 75, 8], [76, 8, 3, 1]])因为data2是一个包含列表的列表,所以Numpy数组arr2形成了二维数组。我们可以通过检查ndim和shape属性来确认这一点:
In [14]: arr2.ndim Out[14]: 2 In [15]: arr2.shape Out[15]: (2, 4)除了np.array,还有很多其他函数可以创建新数组。例如,给定长度及形状后,zeros可以一次性创造全0数组,ones可以一次性创造全1数组。empty则可以创建一个没有初始化数值的数组。想要创建高维数组,则需要为shape传递一个元组
- 创建特殊数组
In [16]: np.zeros(10) Out[16]: array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) In [17]: np.ones(5) Out[17]: array([1., 1., 1., 1., 1.]) In [18]: np.empty((2,3)) Out[18]: array([[0.08437579, 0.43177124, 1.05807761], [3.18693115, 2.39421599, 2.70595 ]])使用np.empty来生成一个全0数组,并不安全,有些时候它可能会返回未初始化的垃圾数值。
- arange是Python内建函数range的数组版
In [19]: np.arange(10) Out[19]: array([0, 1, 2, 3, 4, 5, 6, 7,

最低0.47元/天 解锁文章

758

被折叠的 条评论
为什么被折叠?



