numpy库学习笔记一——ndarray

Numpy库学习

NumPy,是Numerical Python的简称,它是目前Python数值计算中最为重要的基础包。大多数计算包都提供了基于NumPy的科学函数功能,将NumPy的数组对象作为数据交换的通用语。
以下内容将会出现在NumPy中:

  • ndarray——一种高效多维数组,提供了基于数组的便捷算术操作以及灵活的广播功能。
  • 对所有数据进行快速的矩阵计算,而无须编写循环程序。
  • 对硬盘中数组数据进行读写的工具,并对内存映射文件进行操作。
  • 线性代数、随机数生成以及傅里叶变换功能。
  • 用于连接NumPy到C、C++和FORTRAN语言类库的C语言API。

NumPy本身并不提供建模和科学函数

学习目标

  • 在数据处理、清洗、构造子集、过滤、变换以及其他计算中进行快速的向量化计算。
  • 常见的数组算法,比sort、unique以及set操作等。
  • 高效的描述性统计和聚合/概述数据。
  • 数据排列和相关数据操作,例如对异构数据进行merge和join。
  • 使用数组表达式来表明条件逻辑,代替if-elif-else条件分支的循环。- 分组数据的操作(聚合、变换以及函数式操作)

ndarray:多维数组对象

NumPy的核心特征之一就是N-维数组对象——ndarray。ndarray是Python中一个快速、灵活的大型数据集容器。数组允许你使用类似于标量的操作语法在整块数据上进行数学计算。

  • numpy的批量计算
    下面是一个展现NumPy如何使用类似于Python内建对象的标量计算语法进行批量计算的小例子
In [1]: import numpy as np

In [2]: data = np.random.randn(2,3)
#生成一个小的随机数组
In [3]: data
Out[3]:
array([[-0.0421879 , -0.21588562, -0.52903881],
       [-1.59346557, -1.19710799, -1.352975  ]])

In [4]: data*100
Out[4]:
array([[  -4.21878966,  -21.58856219,  -52.90388053],
       [-159.34655725, -119.71079936, -135.29750021]])
#data数组内所有的元素都同时乘以了10
In [5]: data + data
Out[5]:
array([[-0.08437579, -0.43177124, -1.05807761],
       [-3.18693115, -2.39421599, -2.70595   ]])
#数组中的对应元素进行了相加。

使用标准的NumPy导入方式import numpy as np。你当然也可以在代码中写from numpy import*来省略多写的一个np.然而建议你保持写标准导入的方式。numpy这个命名空间包含了大量与Python内建函数重名的函数(比如min和max)

  • 数组的shape属性与数据类型
    一个ndarray是一个通用的多维同类数据容器,也就是说,它包含的每一个元素均为相同类型。每一个数组都有一个shape属性,用来表征数组每一维度的数量;每一个数组都有一个dtype属性,用来描述数组的数据类型.
In [6]: data.shape
Out[6]: (2, 3)

In [7]: data.dtype
Out[7]: dtype('float64')
  • 生成adarray
    array函数接收任意的序列型对象(当然也包括其他的数组),生成一个新的包含传递数据的NumPy数组。例如:

    • 列表的转换
    In [7]: data.dtype
    Out[7]: dtype('float64')
    
    In [8]: data1 = [5,7,4,8,7,0]
    In [9]: arr1 = np.array(data1)
    In [10]: arr1
    Out[10]: array([5, 7, 4, 8, 7, 0])
    
    • 嵌套序列,例如同等长度的列表,将会自动转换成多维数组:
    In [11]: data2 = [[65,6,75,8],[76,8,3,1]]
    
    In [12]: arr2 = np.array(data2)
    In [13]: arr2
    Out[13]:
    array([[65,  6, 75,  8],
           [76,  8,  3,  1]])
    

    因为data2是一个包含列表的列表,所以Numpy数组arr2形成了二维数组。我们可以通过检查ndim和shape属性来确认这一点:

    In [14]: arr2.ndim
    Out[14]: 2
    
    In [15]: arr2.shape
    Out[15]: (2, 4)
    

    除了np.array,还有很多其他函数可以创建新数组。例如,给定长度及形状后,zeros可以一次性创造全0数组,ones可以一次性创造全1数组。empty则可以创建一个没有初始化数值的数组。想要创建高维数组,则需要为shape传递一个元组

    • 创建特殊数组
    In [16]: np.zeros(10)
    Out[16]: array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
    
    In [17]: np.ones(5)
    Out[17]: array([1., 1., 1., 1., 1.])
    
    In [18]: np.empty((2,3))
    Out[18]:
    array([[0.08437579, 0.43177124, 1.05807761],
           [3.18693115, 2.39421599, 2.70595   ]])
    

    使用np.empty来生成一个全0数组,并不安全,有些时候它可能会返回未初始化的垃圾数值。

    • arange是Python内建函数range的数组版
    In [19]: np.arange(10)
    Out[19]: array([0, 1, 2, 3, 4, 5, 6, 7, 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

绿豆蛙给生活加点甜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值