通义千问大模型调优

 一、什么是大模型调优?​​

​大模型调优​​ 指的是通过一系列技术和方法,调整或影响一个大语言模型的行为和输出,使其更契合特定任务、领域或风格需求的过程。简单来说,就是​​“教”一个通用的、知识渊博的模型,让它变得更“专业”,更能理解并满足你的独特要求。​

您给出的定义非常精准:​​“调优是指可以根据自己的需求获取更精准或者更有创建性的一些答案”​​。我们可以从两个维度来理解这个定义:

  1. ​更精准​​:让模型在特定领域(如医疗、法律、金融、你公司的内部知识)的回答更准确、更可靠,减少“幻觉”(即胡编乱造)。

  2. ​更有创造性​​:引导模型的输出风格,使其更幽默、更正式、更简洁,或者模仿某种特定的文风。

1、在深入探讨调优方法之前,我们需要先了解几个关键概念,它们是理解不同调优技术的基础。

1)向量存储

向量存储(VectorStore)是一种用于存储和检索高维向量数据的数据库或存储解决方案,它特别适用于处理那些经过嵌入模型转化后的数据。在 VectorStore 中,查询与传统关系数据库不同。它们执行相似性搜索,而不是精确匹配。当给定一个向量作为查询时,VectorStore 返回与查询向量“相似”的向量。

VectorStore 用于将您的数据与 AI 模型集成。在使用它们时的第一步是将您的数据加载到矢量数据库中。然后,当要将用户查询发送到 AI 模型时,首先检索一组相似文档。然后,这些文档作为用户问题的上下文,并与用户的查询一起发送到 AI 模型。这种技术被称为检索增强生成(Retrieval Augmented Generation,RAG)。

2)提示词工程

Prompt 是引导 AI 模型生成特定输出的输入格式,Prompt 的设计和措辞会显著影响模型的响应。

Prompt 最开始只是简单的字符串,随着时间的推移,prompt 逐渐开始包含特定的占位符,例如 AI 模型可以识别的 “USER:”、“SYSTEM:” 等。阿里云通义模型可通过将多个消息字符串分类为不同的角色,然后再由 AI 模型处理,为 prompt 引入了更多结构。每条消息都分配有特定的角色,这些角色对消息进行分类,明确 AI 模型提示的每个部分的上下文和目的。这种结构化方法增强了与 AI 沟通的细微差别和有效性,因为 prompt 的每个部分在交互中都扮演着独特且明确的角色。

Prompt 中的主要角色(Role)包括:

  • 系统角色(System Role):指导 AI 的行为和响应方式,设置 AI 如何解释和回复输入的参数或规则。这类似于在发起对话之前向 AI 提供说明。
  • 用户角色(User Role):代表用户的输入 - 他们向 AI 提出的问题、命令或陈述。这个角色至关重要,因为它构成了 AI 响应的基础。
  • 助手角色(Assistant Role):AI 对用户输入的响应。这不仅仅是一个答案或反应,它对于保持对话的流畅性至关重要。通过跟踪 AI 之前的响应(其“助手角色”消息),系统可确保连贯且上下文相关的交互。助手消息也可能包含功能工具调用请求信息。它就像 AI 中的一个特殊功能,在需要执行特定功能(例如计算、获取数据或不仅仅是说话)时使用。
  • 工具/功能角色(Tool/Function Role):工具/功能角色专注于响应工具调用助手消息返回附加信息。

3)Temperature(创建性)

​官方解释摘要:​

Temperature 参数用于控制生成过程中的随机性。它调整的是采样过程中概率分布的平滑程度。

​详细说明:​

  • ​工作原理​​:模型会为下一个词计算一个概率分布(所有可能词的概率总和为1)。Temperature 参数的作用是重新调整这个概率分布。

    • 当 temperature = 1时,使用原始的概率分布,不做任何调整。

    • 当 temperature > 1时,会​​提高​​低概率词的概率,​​拉平​​整个概率分布。这使得模型在选择下一个词时,不再那么确信高概率的词,而是会更多地考虑其他可能性,因此输出结果更加随机、不可预测、富有创造性。

    • 当 temperature < 1时(尤其是接近0),会​​降低​​低概率词的概率,​​锐化​​整个概率分布。这使得模型几乎总是选择概率最高的那个词,因此输出结果更加确定、一致、保守。

​取值建议与示例:​

  • ​范围​​: (0, 2]之间的浮点数。通常不建议设置为0,因为这可能导致确定性的输出。

  • ​低温度(0.1 - 0.5)​​:适用于需要事实准确、可重复性高的任务。

    • ​场景​​:事实问答、代码生成、数据提取、技术文档摘要。

    • ​示例​</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值