目录
二叉搜索树概念
二叉搜索树又称二叉排序树,它或者是一棵空树,或者是具有以下性质的二叉树:
- 若它的左子树不为空,则左子树上所有节点的值都小于根节点的值
- 若它的右子树不为空,则右子树上所有节点的值都大于根节点的值
- 它的左右子树也分别为二叉搜索树

二叉搜索树的应用
1. K模型:K模型即只有key作为关键码,结构中只需要存储Key即可,关键码即为需要搜索到的值。
比如:给一个单词word,判断该单词是否拼写正确,具体方式如下:
- 以单词集合中的每个单词作为key,构建一棵二叉搜索树
- 在二叉搜索树中检索该单词是否存在,存在则拼写正确,不存在则拼写错误。
2. KV模型:每一个关键码key,都有与之对应的值Value,即<Key, Value>的键值对。该种方式在现实生活中非常常见:比如英汉词典就是英文与中文的对应关系,通过英文可以快速找到与其对应的中文,英文单词与其对应的中文<word, chinese>就构成一种键值对;再比如统计单词次数,统计成功后,给定单词就可快速找到其出现的次数,单词与其出现次数就是<word, count>就构成一种键值对。
比如:实现一个简单的英汉词典dict,可以通过英文找到与其对应的中文,具体实现方式如下:
- <单词,中文含义>为键值对构造二叉搜索树,注意:二叉搜索树需要比较,键值对比较时只比较Key
- 查询英文单词时,只需给出英文单词,就可快速找到与其对应的key
二叉搜索树K模型的实现
先定义一个节点类,有左节点、右节点和自己的值。
template<class K>
struct BSTreeNode
{
BSTreeNode<K>* _left;
BSTreeNode<K>* _right;
K _key;
BSTreeNode(const K& key)
:_left(nullptr)
, _right(nullptr)
, _key(key)
{}
};
将这棵树定义一个节点,设置这个节点为空。那么这个空树就造好了,我们可以开始对这颗二叉树进行操作。
template<class K>
struct BSTree
{
typedef BSTreeNode<K> Node;
public:
BSTree()//构造初始化
:_root(nullptr)
{}
private:
Node* _root;
}
二叉搜索树的非递归写法
插入
找到要插入的值key的位置,new一个新节点,并与新节点的父亲链接起来。这里如果遇到树中已经存在的值,就不插入。所以二叉搜索树的插入不仅可以插入数据,还可以去重。
所以定义两个节点,一个cur当前节点用来建立新节点,一个parent父节点用来链接新节点。
跟节点是空,就向根节点插入第一个值。这里要找到插入节点所在位置,如果比当前比较节点大,当前节点就向右遍历;如果比当前节点小,向当前节点的左节点遍历。父亲节点parent也要更新。如果当前节点和要插入的节点值相等,就返回false。如果cur节点走向空,就可以创建新节点了,此时我们也记录了父节点的位置。此时cur和parent分别指向一个节点,还没有链接关系,所以要把parent节点和cur节点链接起来。
bool Insert(const K& key)
{
if (_root == nullptr)
{
_root = new Node(key);
}
Node* parent = nullptr;
Node* cur = _root;
while (cur)
{
if (key > cur->_key)
{
parent = cur;
cur = cur->_right;
}
else if (key < cur->_key)
{
parent = cur;
cur = cur->_left;
}
else
return false;
}
//cur为空
cur = new Node(key);
if (key > parent->_key)
parent->_right = cur;
else
parent->_left = cur;
return true;
}
查找
定义一个节点,因为只需要查找,没有要改变的节点,没有链接关系,所以不需要定义父亲节点。
如果要找的key值比当前cur的值大,那么更新cur几点,cur向右走;如果key比当前cur的值要小,cur向左更新。如果找到这个值就返回true;当cur走到空都没找到,返回false。
//查找
bool Find(const K& key)
{
Node* cur = _root;
while (cur)
{
if (key > cur->_key)
cur = cur->_right;
else if (key < cur->_key)
cur = cur->_left;
else
return true;
}
return false;
}
删除
思路:先找到要删除的那个值,和它的父亲
1.没
本文介绍了C++实现二叉搜索树的递归和非递归方法,包括插入、查找和删除操作。二叉搜索树的概念、应用,如K模型和KV模型的实现细节也在文中进行了详细讲解。
最低0.47元/天 解锁文章

777

被折叠的 条评论
为什么被折叠?



