本文关注基于特征点方式的视觉里程计算法。将介绍什么是特征点,如何提取和匹配特征点,以及如何根据配对的特征点估计相机运动。
目录
前言
1. 理解图像特征点的意义, 并掌握在单幅图像中提取出特征点,及多幅图像中匹配特征点的方法。
2. 理解对极几何的原理,利用对极几何的约束,恢复出图像之间的摄像机的三维运动。
3. 理解 PNP 问题,及利用已知三维结构与图像的对应关系,求解摄像机的三维运动。
4. 理解 ICP 问题,及利用点云的匹配关系,求解摄像机的三维运动。
5. 理解如何通过三角化,获得二维图像上对应点的三维结构。
哔哩哔哩课程链接:视觉SLAM十四讲ch7_1_哔哩哔哩_bilibili
一、特征点法
特征点法通常是指在计算机视觉和图像处理中使用的一种方法,其目的是检测和描述图像中的关键特征点。这些特征点可以是图像中独特或显著的位置,如角点、边缘点等,它们在不同图像中具有相似性,因此可以用来进行图像匹配、目标跟踪、三维重建等应用。
特征点法的一般步骤包括以下几个方面:
-
特征点检测: 通过一些算法检测图像中的关键特征点,这些特征点通常是在局部区域内显著的位置,例如角点、边缘点等。常用的特征点检测算法包括Harris角点检测、Shi-Tomasi角点检测、SIFT(尺度不变特征变换)、SURF(加速鲁棒特征)等。
-
特征点描述: 对于检测到的特征点,需要提取其特征描述子,以便后续匹配。这些描述子通常是能够表征特征点周围局部结构的向量或矩阵。常用的特征描述算法包括SIFT描述子、SURF描述子、ORB(Oriented FAST and Rotated BRIEF)描述子等。
-
特征点匹配: 在不同图像中,通过比较特征点的描述子,找到相似的特征点对,从而建立图像间的对应关系。匹配可以使用一些距离度量或相似性度量来完成。
-
应用: 特征点法的应用非常广泛,包括图像配准、目标跟踪、三维重建、拼接图像、物体识别等领域。
1 特征点
VO 的主要问题是如何根据图像来估计相机运动。然而,图像本身是一个由亮度和色彩组成的矩阵,如果直接从矩阵层面考虑运动估计,将会非常困难。所以,习惯于采用这样一种做法:首先,从图像中选取比较有代表性的点。这些点在相机视角发生少量变化后会保持不变,所以会在各个图像中找到相同的点。然后,在这些点的基础上,讨论相机位姿估计问题,以及这些点的定位问题。在经典 SLAM 模型中,把它们称为路标。而在视觉 SLAM 中,路标则是指图像特征(Features)。
- 特征是图像信息的另一种数字表达形式。
- 特征点在相机运动之后保持稳定。
- 特征点是图像里一些特别的地方。

可以作为图像特征的部分:角点、边缘、区块。
人工设计的特征点能够拥有如下的性质:
1. 可重复性(Repeatability):相同的“区域”可以在不同的图像中被找到。
2. 可区别性(Distinctiveness):不同的“区域”有不同的表达。
3. 高效率(Efficiency):同一图像中,特征点的数量应远小于像素的数量。
4. 本地性(Locality):特征仅与一小片图像区域相关。
特征点由关键点(Key-point)和描述子(Descriptor)两部分组成。
比方说,当谈论 SIFT 特征时,是指“提取 SIFT 关键点,并计算 SIFT 描述子”两件事情。关键点是指该特征点在图像里的位置,有些特征点还具有朝向、大小等信息。描述子通常是一个向量,按照某种人为设计的方式,描述了该关键点周围像素的信息。描述子是按照“外观相似的特征应该有相似的描述子”的原则设计的。因此,只要两个特征点的描述子在向量空间上的距离相近,就可以认为它们是同样的特征点。

本文是视觉SLAM学习笔记的一部分,重点介绍了基于特征点的视觉里程计方法,包括特征点检测(如FAST和ORB)及其描述子(如BRIEF),特征匹配以及对极几何在2D-2D匹配中的应用,如对极约束、本质矩阵和单应矩阵。通过这些理论和实践,理解如何在SLAM中估计相机运动并进行三角测量。
最低0.47元/天 解锁文章
2887

被折叠的 条评论
为什么被折叠?



