一.数据仓库的架构设计
数据仓库的主要工作就是ETL Extract-Transform-Load的缩写
1.2数据架构
架构原则:先水平,在垂直
数据架构分三层:
源数据落地区: (SDF source data file)
数据仓库层: DW Data WareHouse
数据集市层: DM Data Market
数据仓库层进一步分三层
源数据层:DWB Data WareHouse Base
细节数据层:DWD Data WareHouse
汇总数据层:DWS Data WareHouse Summary
二.数据仓库的建模:
概念定义:
数据模行是抽象描述现实世界的一种工具和方法
2.1 数据仓库建模的阶段发展:
简单报表阶段
数据集市阶段
数据仓库阶段
2.2数据建模的意义
进行全面的的业务梳理改进业务流程
建立全方位的数据视角,消灭信息孤岛和数据差异
解决业务的变动和数据仓库的灵活性
帮助数据仓库系统本身的建设
2.3如何构建数据模型
数据模型的层次划分
业务建模:主要解决业务层面的分解和程序化。
领域建模:主要是对业务模型进行抽象处理
逻辑建模:主要就是写sql
物理建模:生成表
2.4构建方法:范式建模法
维度建模法
实体建模法</

本文介绍了数据仓库的架构设计,包括数据架构的三层结构:源数据落地区、数据仓库层和数据集市层。接着详细阐述了数据仓库建模的不同阶段、建模方法,如范式建模法和维度建模法,特别是星型和雪花模型的差异。此外,还讨论了Hive在数据分析中的支持,如分析函数和窗口函数的使用。
最低0.47元/天 解锁文章
575

被折叠的 条评论
为什么被折叠?



