hive的高级应用

本文介绍了数据仓库的架构设计,包括数据架构的三层结构:源数据落地区、数据仓库层和数据集市层。接着详细阐述了数据仓库建模的不同阶段、建模方法,如范式建模法和维度建模法,特别是星型和雪花模型的差异。此外,还讨论了Hive在数据分析中的支持,如分析函数和窗口函数的使用。
摘要由CSDN通过智能技术生成

一.数据仓库的架构设计

数据仓库的主要工作就是ETL Extract-Transform-Load的缩写

1.2数据架构

        架构原则:先水平,在垂直

        数据架构分三层:

        源数据落地区: (SDF source data file)

        数据仓库层: DW Data WareHouse

        数据集市层: DM Data Market

        数据仓库层进一步分三层

                源数据层:DWB Data WareHouse Base

                 细节数据层:DWD Data WareHouse

        汇总数据层:DWS Data WareHouse Summary

二.数据仓库的建模:

概念定义:

数据模行是抽象描述现实世界的一种工具和方法

2.1 数据仓库建模的阶段发展:

简单报表阶段

数据集市阶段

数据仓库阶段

2.2数据建模的意义

进行全面的的业务梳理改进业务流程

建立全方位的数据视角,消灭信息孤岛和数据差异

解决业务的变动和数据仓库的灵活性

帮助数据仓库系统本身的建设

2.3如何构建数据模型

数据模型的层次划分

业务建模:主要解决业务层面的分解和程序化。

领域建模:主要是对业务模型进行抽象处理

逻辑建模:主要就是写sql

物理建模:生成表

2.4构建方法:范式建模法

维度建模法

实体建模法</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值