🌕写在前面
- 🍊博客主页:kikoking的江湖背景
- 🎉欢迎关注🔎点赞👍收藏⭐️留言📝
- 🌟本文由 kikokingzz 原创,CSDN首发!
- 📚参考书籍:《大话数据科学》
- 📆首发时间:🌹2021年12月13日🌹
- 🆕最新更新时间:🎄2021年12月13日🎄
- ✉️坚持和努力一定能换来诗与远方!
- 🙏作者水平很有限,如果发现错误,请留言轰炸哦!万分感谢感谢感谢!

目录
🔥1.大数据的定义
🍊1.1大数据的概念
大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。大数据主要解决海量数据的采集、存储和分析计算问题。
例如:你的电脑硬盘容量只有2T,但是需要存储一个100T的文件,这时候你的电脑容量就不够用了,无法通过传统主流工具在合理时间内存储管理,而这就是大数据所要解决的事情!
🍊1.2大数据的特点
💎1.大量:数据量巨大,数据的记录或实例数量大
截至目前,人类生产的所有印刷材料的数据量是200PB,而历史上全人类总共说过的话的数据量大约是5EB。当前,典型个人计算机硬盘的容量为TB量级,而一些大企业的数据量已经接近EB量级。
💎2.高速:数据成长快速,变化快速,算法快速,唯快不破
这是大数据区分于传统数据挖掘的最显著特征。根据IDC的“数字宇宙”的报告,预计到2025年,全球数据使用量将达到163ZB。在如此海量的数据面前,处理数据的效率就是企业的生命。
💎3.多样:数据变量繁杂,包含结构化和非结构化数据
这种类型的多样性也让数据被分为结构化数据和非结构化数据。相对于以往便于存储的以数据库/文本为主的结构化数据,非结构化数据越来越多,包括网络日志、音频、视频、图片、地理位置信息等,这些多类型的数据对数据的处理能力提出了更高要求。
💎4.低价值密度:分析结果的价值密度低
价值密度的高低与数据总量的大小成反比。比如,在一个10TB的文件中提取1MB的有用信息,如何快速对有价值数据“提纯”成为目前大数据背景下待解决的难题。
💎5.怀疑:数据来源和分析结果的正确性需要评价
🍊1.3大数据的价值
对于我们日常来说大数据可以为我们带来什么帮助呢?我们从以下这几个方面看看:
🍓1.大数据可以帮助企业更有效率,更快速,更省钱
具体实现:及时解析故障、问题和缺陷的根源;数据挖掘以规避欺诈行为
🍓2.大数据可以促使营销、份额、品质大幅增长
具体实现:根据客户的购买习惯,为其推送可能感兴趣的优惠信息;从大量客户中识别出金牌客户;对大量消费者或服务企业进行精准营销
🍓3.大数据可以促进企业转型或商业模型的改变
具体实现:制造业(如IBM)转型为信息服务业,中小微企业利用大数据做服务转型;传统企业面临互联网压力,必须进行转型,充分利用大数据的价值
🍓4.大数据可以形成平台互动共享的网络模型
具体实现:大数据使用模型,进而加深对重要用户的洞察力,可以追踪和记录其网络行为,识别业务影响;随着对服务利用的深刻理解,加快利润增长;同时跨多系统收集数据,发展IT服务目录
🍊1.4 大数据涉及到的相关技术
🍓大数据的处理过程
采集------------>存储------------>预处理------------>建模------------>分析------------>形成结果
🍓大数据涉及的技术
涉及技术:以上整个过程涉及感知技术、存储技术、云计算技术、分布式处理技术等
建模分析技术有:统计学、数据挖掘、数据科学、机器学习、人工智能等






最低0.47元/天 解锁文章
2万+

被折叠的 条评论
为什么被折叠?



