目录

🍺知识点9:树的概念与性质
🍯9.1 树的逻辑结构与性质
🍊1.树的逻辑结构
通俗来讲,树的逻辑结构就像是一棵树,有一个树根,从这个树根分叉出很多树枝,而在这些树枝的边缘长了许多茂密的叶子,这一切就是“树”这种逻辑结构的组成。
树的官方定义是这么说的:树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合;当n=0时,为空树,当n>0时,为非空树。任意一棵非空树都满足:
- 有且仅有一个被称为根的结点(如下图的结点A就是根结点)。
- 除根结点外的其余结点可分为m(m>0)个互不相交的有限集T1、T2、···、Tm,其中每个集合本身又是一棵树,称为根的子树;如下图B、C、D是根结点A的子树。
01.树最适合用来表示( )的数据。 A. 有序 B. 无序 C. 任意元素之间具有多种联系 D. 元素之间具有分支层次关系🍊详细题解:
本题考察的其实是树的逻辑结构,树是一种分层结构,适合表示那些具有层次关系的元素结构。具有如下特点:
- 树的根结点没有前驱,除根结点外的所有结点有且只有一个前驱。
- 树中所有结点可以有零个或多个后继。
但需要注意的是,并不能表示任意元素间的多种关系,即不能表示一个结点有多个前驱这种情形,这是“图”的数据结构。
✅正确答案:D
🍊2.树的相关术语
对于上图关于树的逻辑结构,相关术语较多,因此我们在此进行了解:
- 结点的度:一个结点含有的子树的个数;例如上图A结点的度为3,C结点的度为2,N结点的度为0。
- 树的度:树中结点的最大度数;例如上图结点D的度为4,因此上图树的度为4。
- 叶结点:度为0的结点称为叶结点;例如上图的N、O、P结点。
- 分支结点:度不为0的结点;例如上图的A、B、C、D、E、J结点。
- 父亲结点:若一个结点含有子结点,则这个结点称为其子结点的父结点;如A是B、C、D的父亲结点。
- 兄弟结点:具有相同父结点的结点互称为兄弟结点;如上图的B、C、D结点互为兄弟结点。
- 堂兄弟结点:父亲结点互为兄弟结点的结点;如上图G与H结点互为堂兄弟结点,因为它们的父结点分别为B和C,B和C互为兄弟结点。
- 结点的层次:从根开始定义,根为第1层,根的子结点为第2层,以此类推;例如上图A结点为第1层,B结点为第2层,F结点为第3层,O结点为第4层。
- 树的深度/高度:树中结点的最大层次;例如上图树的高度为4。
- 路径:树中两个结点之间所经过的结点序列;例如上图中N到A的路径为N-E-B-A。
- 路径长度:两个结点之间路径上经过的边数;例如上图N到A的路径长度为3,因此下面这道题应当选A。
03.树的路径长度是从树根到每个结点的路径长度的( )。 A. 总和 B. 最小值 C. 最大值 D. 平均值
- 结点的祖先:从根到该结点所经分支上的所有结点;如N的祖先有E、B、A。
- 子孙:结点的子树中的所有结点;例如上图中所有结点(除A自身以外)都是A的子孙,E的子孙是N、O。
- 森林:由m棵不相交的树组成的集合。
🍊3.树的性质
关于树的性质,我们首先需要区分两个概念,那就是度为m的树与m叉树的区别:
度为m的树
m叉树
任意结点的度 ≤ m
任意结点的度 ≤ m
至少有一个结点度 = m
允许所有结点的度都 <= m
一定是非空树,至少有m+1个结点
可以是空树
在区分了度为m的树与m叉树的区别后,我们就可以进一步来介绍树的一些常见性质了。
性质1:结点数 = 总度数 + 1
证明:这是因为树中的所有结点的度数之和等于除了根结点的所有结点数之和,即+1加的是根结点。因此下面这道题应当选A。
02.一棵有n个结点的树的所有结点的度数之和为( )。 A. n-1 B. n C. n+ 1 D. 2n07.【2010统考真题】在一棵度为4的树T中,若有20个度为4的结点,10个度为3的结 点,1个度为2的结点,10个度为1的结点,则树T的叶结点个数是( ) A. 41 B. 82 C. 113 D. 122这道题也是应用上面的性质1求解,通过总度数与总结点数之间的关系构建方程,进而求解出度为0的结点个数(即叶结点的个数),其解法如下:









最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



