LangChain-Core、LangChain-Community、LangChain-Experimental核心组件详解与示例

LangChain-Core、LangChain-Community、LangChain-Experimental核心组件详解与示例


一、LangChain-Core

作用
作为LangChain框架的底层核心库,提供基础抽象接口可观察性工具组件组合逻辑(如LCEL表达式语言),是构建语言模型应用的基石。其设计目标是保持轻量级依赖,同时通过标准化的接口实现跨模型和工具的兼容性。

组成

  1. Runnable协议:定义了所有可运行组件(如模型、链、工具)的输入/输出规范,支持链式组合。
  2. LCEL(LangChain表达式语言) :声明式语法,允许通过管道符|串联组件(如prompt | model | output_parser)。
  3. 基础抽象接口
    • BaseChatModel(聊天模型接口)
    • BaseRetriever(检索器接口)
    • BaseMemory(记忆模块接口)
  4. 可观察性工具:集成LangSmith的跟踪和日志功能。

代码示例

from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_openai import ChatOpenAI  # 需安装langchain-openai

# 定义LCEL链式流程
prompt = ChatPromptTemplate.from_template("用一句话解释{term}的概念")
model = ChatOpenAI(model="gpt-4")
chain = prompt | model | StrOutputParser()

# 调用链
response = chain.invoke({"term": "量子计算"})
print(response)  # 输出量子计算的简明解释

说明:此示例展示了LCEL的声明式组合,通过|运算符串联提示模板、模型和输出解析器。


二、LangChain-Community

作用
提供第三方集成的模块化仓库,涵盖大模型服务(如通义千问)、向量数据库(如Pinecone)、工具接口(如Google Search API)等,由社区维护并保持可选依赖。

组成

  1. 模型集成
    • 开源模型(Llama、GLM)
    • 云服务模型(OpenAI、Anthropic、通义千问等)
  2. 数据连接器
    • 文档加载器(PDF、数据库、网页爬虫)
    • 向量存储适配器(FAISS、Elasticsearch)
  3. 工具扩展
    • 外部API(天气查询、股票数据)
    • 本地工具(Shell命令执行)

代码示例

from langchain_community.llms import Tongyi  # 通义千问集成
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings

# 使用社区版通义千问模型
llm = Tongyi(model_name="qwen-plus", temperature=0.5)
response = llm.invoke("如何用Python实现快速排序?")
print(response)

# 构建FAISS向量库
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
documents = ["LangChain是一个LLM应用框架", "FAISS是高效的向量检索库"]
vector_db = FAISS.from_texts(documents, embeddings)
result = vector_db.similarity_search("框架", k=1)
print(result[0].page_content)  # 输出匹配的文档内容

三、LangChain-Experimental

作用
包含实验性功能高风险组件,例如需要高权限访问的代理、未经验证的算法或前沿技术(如新型推理策略)。这些功能可能不稳定,适用于技术探索场景。

组成

  1. 高级代理
    • 自主决策的多步骤Agent(如GitHub代码修改代理)
    • 需要系统级权限的工具(如文件系统操作)
  2. 新型链结构
    • 基于强化学习的动态链调整
    • 多模型协作链(如LLM+DALL·E联合生成)
  3. 前沿算法
    • 基于知识图谱的推理引擎
    • 分布式任务分发机制

代码示例

from langchain_experimental.agents import AutoDebuggerAgent
from langchain_experimental.tools import SystemShellTool

# 创建具有Shell访问权限的实验性代理
tools = [SystemShellTool()]
agent = AutoDebuggerAgent.from_llm_and_tools(
    llm=ChatOpenAI(temperature=0),
    tools=tools,
    verbose=True
)

# 执行复杂任务(需谨慎!)
response = agent.run("分析当前目录下的app.log文件,找出错误并修复")
print(response)  # 可能执行Shell命令修改文件

警告:此类代理可能执行高风险操作,建议在沙箱环境中使用。


三模块协作关系

模块定位典型使用场景稳定性
LangChain-Core基础设施层定义接口、构建标准化流程
LangChain-Community生态扩展层集成第三方服务
LangChain-Experimental创新试验田技术预研、高风险功能开发

总结

  • Core是地基:通过LCEL和标准化接口实现组件解耦,如Runnable协议允许任意组件自由组合。
  • Community是生态:通过模块化设计降低依赖冲突,例如仅安装langchain-openai即可使用GPT模型。
  • Experimental是实验室:为框架注入创新活力,但需谨慎用于生产环境。

开发者应根据需求合理选择模块:核心业务逻辑使用Core,快速接入外部服务使用Community,前沿技术预研使用Experimental。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值