树形DP
树形DP准确的说是一种DP的思想,将DP建立在树状结构的基础上。整体的思路大致就是用树形的结构存储数据。
树形dp每次以子树为单位进行计算。
树形DP的关键和实现方法是dfs。
先 找 到 树 根 , 从 树 根 开 始 运 用 d f s 递 归 , 跟 d f s 一 样 先 初 始 化 , 然 后 递 归 到 叶 子 节 点 上 为 止 , 把 最 底 层 的 f [ i ] [ j ] 更 新 完 毕 , 再 回 来 往 上 走 , 自 底 向 上 地 根 据 题 意 更 新 上 层 的 f 数 组 , 最 后 输 出 答 案 即 可 。 先找到树根,从树根开始运用 dfs 递归,跟dfs一样先初始化,然后递归到叶子节点上为止,把最底层的f[i][j] 更新完毕,再回来往上走,自底向上地根据题意更新上层的f数组,最后输出答案即可。 先找到树根,从树根开始运用dfs递归,跟dfs一样先初始化,然后递归到叶子节点上为止,把最底层的f[i][j]更新完毕,再回来往上走,自底向上地根据题意更新上层的f数组,最后输出答案即可。

1.没有上司的舞会
【题目链接】285. 没有上司的舞会 - AcWing题库
Ural 大学有 N 名职员,编号为 1∼N。
他们的关系就像一棵以校长为根的树,父节点就是子节点的直接上司。
每个职员有一个快乐指数,用整数 HiHi 给出,其中 1≤i≤N。
现在要召开一场周年庆宴会,不过,没有职员愿意和直接上司一起参会。
在满足这个条件的前提下,主办方希望邀请一部分职员参会,使得所有参会职员的快乐指数总和最大,求这个最大值。
输入格式
第一行一个整数 N。
接下来 N 行,第 i 行表示 i 号职员的快乐指数 Hi。
接下来 N−1 行,每行输入一对整数 L,K,表示 K 是 L 的直接上司。
输出格式
输出最大的快乐指数。
数据范围
1≤N≤6000,
−128≤Hi≤127输入样例:
7 1 1 1 1 1 1 1 1 3 2 3 6 4 7 4 4 5 3 5输出样例:
5
思路:
树形dp
状态表示
f[u][0]:所有以u为根的子树中选择,并且不选u这个点的方案
f[u][1]:所有以u为根的子树中选择,并且选u这个点的方案
属性:Max
状态计算
当前u结点不选,子结点可选可不选
f[u][0]=∑max(f[si,0],f[si,1])
当前u结点选,子结点一定不能选
f[u][1]=∑(f[si,0])
时间复杂度: O(n)
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 6010;
int dp[N][2];
int h[N], e[N], ne[N], idx;
int happy[N];
bool vis[N];
int n;
void add(int a, int b)
{
e[idx] = b, ne[idx] = h[a], h[a] = idx ++;
}
void dfs(int u)
{
dp[u][1] = happy[u];// 如果选择u这个点的话 需要先加上这个点的高兴度!
for(int i = h[u]; i != -1; i = ne[i])
{
int j = e[i];
dfs(j);
dp[u][0] += max(dp[j][0], dp[j][1]);//不选u这个根节点
dp[u][1] += dp[j][0];// 选择u这个根节点
}
}
int main()
{
scanf("%d", &n);
for (int i = 1; i <= n; i ++ ) scanf("%d", &happy[i]);// 开心值(点权)
memset(h, -1, sizeof h);
for (int i = 0; i < n - 1; i ++ )
{
int a, b;
scanf("%d%d", &a, &b);
add(b, a);
vis[a] = true; // 表示它有父节点
}
//寻找根节点
int root = 1;
while(vis[root]) root ++;
dfs(root);
printf("%d\n", max(dp[root][0], dp[root][1]));// 选择根节点的最大值和不选择根节点的最大值
return 0;
}
2.生命之树
【题目链接】1220. 生命之树 - AcWing题库
在X森林里,上帝创建了生命之树。
他给每棵树的每个节点(叶子也称为一个节点)上,都标了一个整数,代表这个点的和谐值。
上帝要在这棵树内选出一个非空节点集 S,使得对于 S 中的任意两个点 a,b,都存在一个点列 {a,v1,v2,…,vk,b} 使得这个点列中的每个点都是 S 里面的元素,且序列中相邻两个点间有一条边相连。
在这个前提下,上帝要使得 S 中的点所对应的整数的和尽量大。
这个最大的和就是上帝给生命之树的评分。
经过 atm 的努力,他已经知道了上帝给每棵树上每个节点上的整数。
但是由于 atm 不擅长计算,他不知道怎样有效的求评分。
他需要你为他写一个程序来计算一棵树的分数。
输入格式
第一行一个整数 n 表示这棵树有 n 个节点。第二行 n 个整数,依次表示每个节点的评分。
接下来 n−1 行,每行 2 个整数 u,v,表示存在一条 u 到 v 的边。
由于这是一棵树,所以是不存在环的。
树的节点编号从 1 到 n。
输出格式
输出一行一个数,表示上帝给这棵树的分数。数据范围
1≤n≤105,
每个节点的评分的绝对值均不超过 106。输入

本文介绍了树形动态规划(DP)在解决图论问题中的应用,如求解没有上司的舞会中最大快乐指数、生命之树的最大评分、树的重心以及大臣的旅费问题。通过深度优先搜索(DFS)遍历树结构,以子树为单位进行状态转移,求解最优解。并给出了多个实例的详细解析和代码实现。
最低0.47元/天 解锁文章
750

被折叠的 条评论
为什么被折叠?



