JVM实际上是由C/C++代码实现的
JVM statck:我们平时所说的栈
本地方法栈:C/C++代码
堆:对象
程序计数器:下一条指令
方法区:静态的成员变量
1. 方法的基本方法
// 方法定义
public static 方法返回值 方法名称([参数类型 形参 ...]){
方法体代码;
[return 返回值];
}
// 方法调用
返回值变量 = 方法名称(实参...);
1.Java中的方法一定是写在类里面的
2.方法的名称一定是小驼峰
计算 1! + 2! + 3! + 4! + 5!
public static int fac(int n){
int ret=1;
for(int i=1;i<=n;i++){
ret*=i;
}
return ret;
}
public static int facSum(int num){
int sum=1;
for(int i=1;i<=num;i++){
sum+=fac(i);
}
return sum;
}
代码示例: 实现一个方法实现两个整数相加
class Test {
public static void main(String[] args) {
int a = 10;
int b = 20;
// 方法的调用
int ret = add(a, b);
System.out.println("ret = " + ret);
}
// 方法的定义
public static int add(int x, int y) {
return x + y;
}
}
// 执行结果
ret = 30
注意事项
- public 和 static 两个关键字在此处具有特定含义, 我们暂时不讨论, 后面会详细介绍.
- 方法定义时, 参数可以没有. 每个参数要指定类型
- 方法定义时, 返回值也可以没有, 如果没有返回值, 则返回值类型应写成 void
- 方法定义时的参数称为 “形参”, 方法调用时的参数称为 “实参”.
- 方法的定义必须在类之中, 代码书写在调用位置的上方或者下方均可.
- Java 中没有 “函数声明” 这样的概念.
方法调用的执行过程
基本规则
定义方法的时候, 不会执行方法的代码. 只有调用的时候才会执行.
当方法被调用的时候, 会将实参赋值给形参.
参数传递完毕后, 就会执行到方法体代码.
当方法执行完毕之后(遇到 return 语句), 就执行完毕, 回到方法调用位置继续往下执行.
一个方法可以被多次调用.
一次调用方法之前
调用方法中 x = 10 y = 20
第一次调用方法之后
ret = 30
第二次调用方法之前
调用方法中 x = 30 y = 50
第二次调用方法之后
实参和形参的关系
代码示例: 交换两个整型变量
class Test {
public static void main(String[] args) {
int a = 10;
int b = 20;
swap(a, b);
System.out.println("a = " + a + " b = " + b);
}
public static void swap(int x, int y) {
int tmp = x;
x = y;
y = tmp;
}
}
// 运行结果
a = 10 b = 20
原因分析
刚才的代码, 没有完成数据的交换.
对于基础类型来说, 形参相当于实参的拷贝. 即 传值调用
解决办法: 传引用类型参数 (例如数组来解决这个问题)
class Test {
public static void main(String[] args) {
int[] arr = {10, 20};
swap(arr);
System.out.println("a = " + arr[0] + " b = " + arr[1]);
}
public static void swap(int[] arr) {
int tmp = arr[0];
arr[0] = arr[1];
arr[1] = tmp;
}
}
// 运行结果
a = 20 b = 10
没有返回值的方法
方法的返回值是可选的. 有些时候可以没有的.
class Test {
public static void main(String[] args) {
int a = 10;
int b = 20;
print(a, b);
}
public static void print(int x, int y) {
System.out.println("x = " + x + " y = " + y);
}
}
另外, 如刚才的交换两个整数的方法, 就是没有返回值的.
方法的重载
重载:在同一个类中
1.方法名相同
2.参数列表不同(类型&个数)
3.返回值不做要求
有些时候我们需要用一个函数同时兼容多种参数的情况, 我们就可以使用到方法重载.
class Test {
public static void main(String[] args) {
int a = 10;
int b = 20;
int ret = add(a, b);
System.out.println("ret = " + ret);
double a2 = 10.5;
double b2 = 20.5;
double ret2 = add(a2, b2);
System.out.println("ret2 = " + ret2);
double a3 = 10.5;
double b3 = 10.5;
double c3 = 20.5;
double ret3 = add(a3, b3, c3);
System.out.println("ret3 = " + ret3);
}
public static int add(int x, int y) {
return x + y;
}
public static double add(double x, double y) {
return x + y;
}
public static double add(double x, double y, double z) {
return x + y + z;
}
}
方法的名字都叫 add. 但是有的 add 是计算 int 相加, 有的是 double 相加; 有的计算两个数字相加, 有的是计算三个数字相加.
同一个方法名字, 提供不同版本的实现, 称为 方法重载
可变参数编程
public static int sub(int... array){
int sub=0;
for(int i=0;i<array.length;i++){
sub=sub-array[i];
}
return sub;
}
public static void main(String[] args){
System.out.println(sub(1,2,3,4,5,6,7));
System.out.println(sub(1,2,3,4));
System.out.println(sub(1,2));
}
重载的规则
针对同一个类:
方法名相同
方法的参数不同(参数个数或者参数类型)
方法的返回值类型不影响重载.
方法递归
将大问题化解为小问题,意味着处理大问题的方式和处理小问题的方式是一样的。
1.有一个趋近于终止的条件
2.调用自己本身
递归相当于数学上的 “数学归纳法”, 有一个起始条件, 然后有一个递推公式.
例如, 我们求 N!
起始条件: N = 1 的时候, N! 为 1. 这个起始条件相当于递归的结束条件.
递归公式: 求 N! , 直接不好求, 可以把问题转换成 N! => N * (N-1)!
代码示例: 递归求 N 的阶乘
public static void main(String[] args) {
int n = 5;
int ret = factor(n);
System.out.println("ret = " + ret);
}
public static int factor(int n) {
if (n == 1) {
return 1;
}
return n * factor(n - 1); // factor 调用函数自身
}
// 执行结果
ret = 120
递归练习
代码示例: 按顺序打印一个数字的每一位(例如 1234 打印出 1 2 3 4)
public static int factor(int n) {
System.out.println("函数开始, n = " + n);
if (n == 1) {
System.out.println("函数结束, n = 1 ret = 1");
return 1;
}
int ret = n * factor(n - 1);
System.out.println("函数结束, n = " + n + " ret = " + ret);
return ret; }
// 执行结果
函数开始, n = 5
函数开始, n = 4
函数开始, n = 3
函数开始, n = 2
函数开始, n = 1
函数结束, n = 1 ret = 1
函数结束, n = 2 ret = 2
函数结束, n = 3 ret = 6
函数结束, n = 4 ret = 24
函数结束, n = 5 ret = 120
ret = 120
代码示例: 递归求 1 + 2 + 3 + … + 10
public static int sum(int num) {
if (num == 1) {
return 1;
}
return num + sum(num - 1);
}
代码示例3 写一个递归方法,输入一个非负整数,返回组成它的数字之和. 例如,输入 1729, 则应该返回1+7+2+9,它的和是19
public static int sum(int num) {
if (num < 10) {
return num;
}
return num % 10 + sum(num / 10);
}
代码示例:求斐波那契数列的第 N 项
public static int fib(int n) {
if (n == 1 || n == 2) {
return 1;
}
return fib(n - 1) + fib(n - 2);
}
可以使用循环的方式来求斐波那契数列问题, 避免出现冗余运算.
public static int fib(int n) {
int last2 = 1;
int last1 = 1;
int cur = 0;
for (int i = 3; i <= n; i++) {
cur = last1 + last2;
last2 = last1;
last1 = cur;
}
return cur;
}
此时程序的执行效率大大提高了.
递归小结
递归是一种重要的编程解决问题的方式.
有些问题天然就是使用递归方式定义的(例如斐波那契数列, 二叉树等), 此时使用递归来解就很容易.
有些问题使用递归和使用非递归(循环)都可以解决. 那么此时更推荐使用循环, 相比于递归, 非递归程序更加高效.
3130

被折叠的 条评论
为什么被折叠?



