方法的使用

JVM实际上是由C/C++代码实现的
JVM statck:我们平时所说的栈
本地方法栈:C/C++代码
堆:对象
程序计数器:下一条指令
方法区:静态的成员变量

1. 方法的基本方法

// 方法定义
public static 方法返回值 方法名称([参数类型 形参 ...]){
 方法体代码;
 [return 返回值];
}
// 方法调用
返回值变量 = 方法名称(实参...);

1.Java中的方法一定是写在类里面的
2.方法的名称一定是小驼峰

计算 1! + 2! + 3! + 4! + 5!

public static int fac(int n){
 int ret=1;
 for(int i=1;i<=n;i++){
   ret*=i;
 }
 return ret;
}
public static int facSum(int num){
  int sum=1;
  for(int i=1;i<=num;i++){
   sum+=fac(i);
  }
  return sum;
}

代码示例: 实现一个方法实现两个整数相加

class Test {
 public static void main(String[] args) {
 int a = 10;
 int b = 20;
        
        // 方法的调用
 int ret = add(a, b);
 System.out.println("ret = " + ret);
 }
    // 方法的定义
 public static int add(int x, int y) {
 return x + y;
 }
}
// 执行结果
ret = 30

注意事项

  1. public 和 static 两个关键字在此处具有特定含义, 我们暂时不讨论, 后面会详细介绍.
  2. 方法定义时, 参数可以没有. 每个参数要指定类型
  3. 方法定义时, 返回值也可以没有, 如果没有返回值, 则返回值类型应写成 void
  4. 方法定义时的参数称为 “形参”, 方法调用时的参数称为 “实参”.
  5. 方法的定义必须在类之中, 代码书写在调用位置的上方或者下方均可.
  6. Java 中没有 “函数声明” 这样的概念.

方法调用的执行过程

基本规则
定义方法的时候, 不会执行方法的代码. 只有调用的时候才会执行.
当方法被调用的时候, 会将实参赋值给形参.
参数传递完毕后, 就会执行到方法体代码.
当方法执行完毕之后(遇到 return 语句), 就执行完毕, 回到方法调用位置继续往下执行.
一个方法可以被多次调用.

一次调用方法之前
调用方法中 x = 10 y = 20
第一次调用方法之后
ret = 30
第二次调用方法之前
调用方法中 x = 30 y = 50
第二次调用方法之后

实参和形参的关系

代码示例: 交换两个整型变量

class Test {
 public static void main(String[] args) {
 int a = 10;
 int b = 20;
 swap(a, b);
 System.out.println("a = " + a + " b = " + b);
 }
 public static void swap(int x, int y) {
 int tmp = x;
 x = y;
 y = tmp;
 }
}
// 运行结果
a = 10 b = 20

原因分析
刚才的代码, 没有完成数据的交换.
对于基础类型来说, 形参相当于实参的拷贝. 即 传值调用

解决办法: 传引用类型参数 (例如数组来解决这个问题)

class Test {
 public static void main(String[] args) {
 int[] arr = {10, 20};
 swap(arr);
 System.out.println("a = " + arr[0] + " b = " + arr[1]);
 }
 public static void swap(int[] arr) {
 int tmp = arr[0];
 arr[0] = arr[1];
 arr[1] = tmp;
 }
}
// 运行结果
a = 20 b = 10

没有返回值的方法

方法的返回值是可选的. 有些时候可以没有的.

class Test {
 public static void main(String[] args) {
 int a = 10;
 int b = 20;
 print(a, b);
 }
 public static void print(int x, int y) {
 System.out.println("x = " + x + " y = " + y);
 }
}

另外, 如刚才的交换两个整数的方法, 就是没有返回值的.

方法的重载

重载:在同一个类中
1.方法名相同
2.参数列表不同(类型&个数)
3.返回值不做要求

有些时候我们需要用一个函数同时兼容多种参数的情况, 我们就可以使用到方法重载.

class Test {
 public static void main(String[] args) {
 int a = 10;
 int b = 20;
 int ret = add(a, b);
 System.out.println("ret = " + ret);
 double a2 = 10.5;
 double b2 = 20.5;
 double ret2 = add(a2, b2);
 System.out.println("ret2 = " + ret2);
 double a3 = 10.5;
 double b3 = 10.5;
 double c3 = 20.5;
 double ret3 = add(a3, b3, c3);
 System.out.println("ret3 = " + ret3);
 }
  public static int add(int x, int y) {
 return x + y;
 }
 public static double add(double x, double y) {
 return x + y;
 }
 public static double add(double x, double y, double z) {
 return x + y + z;
 }
}

方法的名字都叫 add. 但是有的 add 是计算 int 相加, 有的是 double 相加; 有的计算两个数字相加, 有的是计算三个数字相加.
同一个方法名字, 提供不同版本的实现, 称为 方法重载

可变参数编程

public static int sub(int... array){
   int sub=0;
   for(int i=0;i<array.length;i++){
  sub=sub-array[i];
   }
return sub;
}
public static void main(String[] args){
  System.out.println(sub(1,2,3,4,5,6,7));
  System.out.println(sub(1,2,3,4));
  System.out.println(sub(1,2));
}

重载的规则

针对同一个类:
方法名相同
方法的参数不同(参数个数或者参数类型)
方法的返回值类型不影响重载.

方法递归

将大问题化解为小问题,意味着处理大问题的方式和处理小问题的方式是一样的。
1.有一个趋近于终止的条件
2.调用自己本身
递归相当于数学上的 “数学归纳法”, 有一个起始条件, 然后有一个递推公式.

例如, 我们求 N!
起始条件: N = 1 的时候, N! 为 1. 这个起始条件相当于递归的结束条件.
递归公式: 求 N! , 直接不好求, 可以把问题转换成 N! => N * (N-1)!
代码示例: 递归求 N 的阶乘

public static void main(String[] args) {
    int n = 5;
    int ret = factor(n);
    System.out.println("ret = " + ret);
}
public static int factor(int n) {
    if (n == 1) {
        return 1;
   }
    return n * factor(n - 1); // factor 调用函数自身
}
// 执行结果
ret = 120

递归练习

代码示例: 按顺序打印一个数字的每一位(例如 1234 打印出 1 2 3 4)

public static int factor(int n) {
    System.out.println("函数开始, n = " + n);
    if (n == 1) {
        System.out.println("函数结束, n = 1 ret = 1");
        return 1;
   }
    int ret = n * factor(n - 1);
    System.out.println("函数结束, n = " + n + " ret = " + ret);
    return ret; }
// 执行结果
函数开始, n = 5
函数开始, n = 4
函数开始, n = 3
函数开始, n = 2
函数开始, n = 1
函数结束, n = 1 ret = 1
函数结束, n = 2 ret = 2
函数结束, n = 3 ret = 6
函数结束, n = 4 ret = 24
函数结束, n = 5 ret = 120
ret = 120

代码示例: 递归求 1 + 2 + 3 + … + 10

public static int sum(int num) { 
 if (num == 1) { 
 return 1; 
 } 
 return num + sum(num - 1); 
} 

代码示例3 写一个递归方法,输入一个非负整数,返回组成它的数字之和. 例如,输入 1729, 则应该返回1+7+2+9,它的和是19

public static int sum(int num) { 
 if (num < 10) { 
 return num; 
 } 
 return num % 10 + sum(num / 10); 
} 

代码示例:求斐波那契数列的第 N 项

public static int fib(int n) { 
 if (n == 1 || n == 2) { 
 return 1; 
 } 
 return fib(n - 1) + fib(n - 2); 
} 

可以使用循环的方式来求斐波那契数列问题, 避免出现冗余运算.

public static int fib(int n) { 
 int last2 = 1; 
 int last1 = 1; 
 int cur = 0; 
 for (int i = 3; i <= n; i++) { 
 cur = last1 + last2; 
 last2 = last1; 
 last1 = cur; 
 } 
 return cur; 
} 

此时程序的执行效率大大提高了.

递归小结

递归是一种重要的编程解决问题的方式.
有些问题天然就是使用递归方式定义的(例如斐波那契数列, 二叉树等), 此时使用递归来解就很容易.
有些问题使用递归和使用非递归(循环)都可以解决. 那么此时更推荐使用循环, 相比于递归, 非递归程序更加高效.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值