复杂度:衡量一个算法的效率的
时间复杂度
算法中的基本操作的执行次数,为算法的时间复杂度。
// 请计算一下func1基本操作执行了多少次?
void func1(int N){
int count = 0;
for (int i = 0; i < N ; i++) { //执行了N*N次
for (int j = 0; j < N ; j++) {
count++;
}
}
for (int k = 0; k < 2 * N ; k++) { //执行了2*N次
count++;
}
int M = 10;
while ((M--) > 0) { //执行了10次
count++;
}
System.out.println(count);
}
所以Func1执行的基本操作次数:N^2+2N+10
推导大O阶方法:
1、用常数1取代运行时间中的所有加法常数。N^2+2N+1
2、在修改后的运行次数函数中,只保留最高阶项。N^2
3、如最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。N^2
使用大O的渐进表示法以后,Func1的时间复杂度为 O(N^2)
冒泡排序
void bubbleSort(int[] array) {
for (int end = array.length; end > 0; end--) {
boolean sorted = true;
for (int i = 1; i < end; i++) {
if (array[i - 1] > array[i]) {
Swap(array, i - 1, i);
sorted = false;
}
}
if (sorted == true) {
break;
}
}
}
最坏情况(时间复杂度):O(N^2)
最好情况:O(N)
二分查找
int binarySearch(int[] array, int value) {
int begin = 0;
int end = array.length - 1;
while (begin <= end) {
int mid = begin + ((end-begin) / 2);
if (array[mid] < value)
begin = mid + 1;
else if (array[mid] > value)
end = mid - 1;
else
return mid;
}
return -1;
}
时间复杂度:O(log2n)
计算阶乘递归factorial的时间复杂度?
long factorial(int N) {
return N < 2 ? N : factorial(N-1) * N; }
时间复杂度:O(N)
计算斐波那契递归fibonacci的时间复杂度?
int fibonacci(int N) {
return N < 2 ? N : fibonacci(N-1)+fibonacci(N-2);
}
时间复杂度:O(2^N-1)
空间复杂度
一个算法在运行过程中临时占用存储空间大小的量度
计算bubbleSort的空间复杂度?
// 计算bubbleSort的空间复杂度?
void bubbleSort(int[] array) {
for (int end = array.length; end > 0; end--) {
boolean sorted = true;
for (int i = 1; i < end; i++) {
if (array[i - 1] > array[i]) {
Swap(array, i - 1, i);
sorted = false;
}
}
if (sorted == true) {
break;
}
}
}
空间复杂度:O(1)
计算fibonacci的空间复杂度?
// 计算fibonacci的空间复杂度?
int[] fibonacci(int n) {
long[] fibArray = new long[n + 1];
fibArray[0] = 0;
fibArray[1] = 1;
for (int i = 2; i <= n ; i++) {
fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
}
return fibArray; }
空间复杂度:O(n)
// 计算阶乘递归Factorial的时间复杂度?
long factorial(int N) {
return N < 2 ? N : factorial(N-1)*N; }
空间复杂度:O(n)
本文详细探讨了算法的时间复杂度和空间复杂度,包括冒泡排序、二分查找、阶乘递归和斐波那契递归的复杂度分析。冒泡排序在最坏情况下为O(N^2),二分查找为O(log2n),阶乘递归为O(N),斐波那契递归为O(2^N-1)。同时,还分析了它们的空间复杂度,例如bubbleSort和斐波那契递归的空间复杂度分别为O(1)和O(n)。这些分析对于理解和优化算法性能至关重要。
964

被折叠的 条评论
为什么被折叠?



