科学计数法是科学家用来表示很大或很小的数字的一种方便的方法,其满足正则表达式 [+-][1-9].[0-9]+E[+-][0-9]+,即数字的整数部分只有 1 位,小数部分至少有 1 位,该数字及其指数部分的正负号即使对正数也必定明确给出。
现以科学计数法的格式给出实数 A,请编写程序按普通数字表示法输出 A,并保证所有有效位都被保留。
输入格式:
每个输入包含 1 个测试用例,即一个以科学计数法表示的实数 A。该数字的存储长度不超过 9999 字节,且其指数的绝对值不超过 9999。
输出格式:
对每个测试用例,在一行中按普通数字表示法输出 A,并保证所有有效位都被保留,包括末尾的 0。
输入样例 1:
+1.23400E-03
结尾无空行
输出样例 1:
0.00123400
结尾无空行
输入样例 2:
-1.2E+10
结尾无空行
输出样例 2:
-12000000000
结尾无空行
import re
s = input()
g = re.match('([+-])(\d+).(\d+)E([+-])(\d+)', s)
digit = int(g.group(5))
nums = g.group(3)
# 符号位
if g.group(1) == '-':
print('-', end='')
if g.group(4) == '-': # 小数
print("0.", end='')
print("0" * (digit - 1), end='')
print(g.group(2) + g.group(3))
else:
print(g.group(2), end='')
if digit >= len(nums):
print(nums, end='')
print("0" * (digit - len(nums) ), end='') #1.2×10^6, 补全后面0
else:
print(nums[:digit] + "." + nums[digit:])# 如1.3333×10^2,出现小数点
本文介绍如何编写程序,将科学计数法表示的实数转换为普通数字形式,确保所有有效位都被保留,包括小数点后的零。通过正则表达式解析输入,根据不同情况处理符号、整数和指数部分,以实现精确转换。

217

被折叠的 条评论
为什么被折叠?



