TensorFlow转Pytorch网络

文章介绍了如何将一个基于TensorFlow的MNIST手写数字分类模型转换为PyTorch实现。作者首先展示了TensorFlow模型的结构,然后逐步构建了等效的PyTorch网络,并使用torchsummary库来输出PyTorch模型的结构。虽然参数略有差异,但两个模型的运行结果相似。
摘要由CSDN通过智能技术生成

前言

我在github搜了一个mnist分类代码,基于TensorFlow框架的,效果挺不错,但是我只想用pytorch,所以打算转成pytorch代码。

过程

TensorFlow网络:

def model_net(num):

    model = Sequential()

    model.add(Conv2D(filters=16, kernel_size=(5, 5), padding='Same',
                     activation='relu', input_shape=(28, 28, 3)))
    model.add(BatchNormalization())


    model.add(Conv2D(filters=16, kernel_size=(3, 3), padding='Same',
                     activation='relu'))
    model.add(BatchNormalization())
    model.add(Conv2D(filters=32, kernel_size=(3, 3), padding='Same',
                     activation='relu'))
    model.add(BatchNormalization())
    model.add(MaxPool2D(pool_size=(2, 2), strides=(2, 2)))


    model.add(Flatten())
    model.add(Dense(256, activation="relu"))
    model.add(Dropout(0.5))
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>