吴恩达机器学习笔记

这篇博客是学习吴恩达机器学习课程的详细笔记,涵盖了从介绍到正则化的各个主题,包括监督学习与无监督学习的类型、线性回归与逻辑回归的模型表示、代价函数、梯度下降算法、正则化方法以及神经网络的表示和学习过程。笔记深入浅出,详细介绍了如何处理具有多个变量的线性回归、非线性决策边界、特征缩放和学习率的选择,以及如何避免过拟合等关键概念。
摘要由CSDN通过智能技术生成

是学习吴恩达机器学习课程时的笔记

[中英字幕]吴恩达机器学习系列课程_哔哩哔哩_bilibili

一、介绍

1.1 什么是机器学习?

Tom Mitchell(1998)适定学习问题:如果计算机程序在 T 上的性能(由 P 衡量)随着经验 E 的提高而提高,则可以说计算机程序从经验 E 中学习某些任务 T 和某些性能度量 P。

1.2 机器学习问题的类型

1.2.1 监督学习

监督学习:给算法一个数据集其中包含了“正确答案”。对于数据集中的每个样本,我们想要算法预测并得出“正确答案”。

学习算法能处理无穷多特征。

常见的监督学习问题:

  1. 回归问题:目的是预测连续值输出。
  2. 分类问题:目的是预测离散值输出。

1.2.2 无监督学习

无监督学习:所用的数据没有任何标签,或者都具有相同的标签,或者真的没有标签。从数据集中找到某种结构。

常见的无监督学习问题:

  1. 聚类算法:对于给定的数据集,无监督学习算法可能判定该数据集包含两个不同的簇,并把数据分成两个簇。
  2. 鸡尾酒会算法:找出数据的结构,分离出被叠加、混合到一起的音频源。

二、具有一个变量的线性回归

2.1 模型表示

2.1.1 符号说明

m:训练样本的数量

x:输入变量/特征

y:输出变量/目标变量

\left ( x, y \right ):一个训练样本

(x^{(i)}, y^{(i)}):第i个训练样本

h:假设函数,用来预测的函数

\Theta _{i}:模型参数

J\left ( \Theta _{0},\Theta _{1}\right ):代价函数

minJ\left ( \Theta _{0},\Theta _{1}\right ):目标 

2.1.2 如何给训练集下定义

线性回归模型:

一元(单变量)线性回归:h\left ( x \right )= \Theta _{0} + \Theta _{1}x

2.2 代价函数

目标:调整参数值,使假设函数表示的直线拟合数据。

做法:输入x时,要选择预测值最接近该样本y值所对应的模型参数。

标准的定义:在线性回归中,要解决的是一个最小化问题,即minJ\left ( \Theta _{0},\Theta _{1}\right )

 代价函数 J\left ( \Theta _{0},\Theta _{1}\right )= \frac{1}{2m}\sum_{i=1}^{m}\left ( h\left ( x^{(i)} \right )-y^{(i)} \right )^{2} —— 平方误差代价函数

 求误差的平方和的原因:平方误差代价函数对于大多数问题,特别是回归问题都是一个合理的选择。

2.3 梯度下降算法

思路:

  1. 给定模型参数的初始值,通常初始化为0
  2. 不停地一点一点改变模型参数值,使代价函数J变小,直到找到J的最小值或者局部最小值

重复\Theta _{j}=\Theta _{j}-\alpha \frac{\partial J\left ( \Theta _{0}, \Theta _{1}\right )}{\partial \Theta_{j}}        ( for j=0 and j=1 ),直到收敛。

其中,\alpha是学习率,用来控制梯度下降时,我们迈出多大的步子。如果\alpha值很大,梯度下降可能越过最低点,甚至可能无法收敛或者发散;如果\alpha值很小,梯度下降就很慢。

注意:初始值不同,最终局部最优解可能不同;需要同时更新参数。

 temp_{0} =\Theta _{0}-\alpha \frac{\partial J\left ( \Theta _{0}, \Theta _{1}\right )}{\partial \Theta_{0}}

temp_{1} =\Theta _{1}-\alpha \frac{\partial J\left ( \Theta _{0}, \Theta _{1}\right )}{\partial \Theta_{1}}

\Theta _{0}=temp_{0}

\Theta _{1}=temp_{1}

即使学习率是固定的,梯度下降也能收敛到局部最低点。当接近局部最小值时,导数值越来越小,梯度下降将自动采取更小的步骤。 因此,无需随时间减小 α。

2.4 线性回归的梯度下降

将梯度下降法应用到最小化平方差代价函数。

\frac{\partial J \left ( \Theta _{0} , \Theta _{1}\right ) }{\partial \Theta _{j}}= \frac{1}{2m}\frac{\partial }{\partial \Theta _{j}}\sum_{i=1}^{m}\left ( \Theta _{0} + \Theta _{1} x^{(i)}-y^{(i)} \right )^{2}

求导:

j=0:\frac{\partial J\left ( \Theta _{0}, \Theta _{1} \right ) }{\partial \Theta _{0}}=\frac{1}{m}\sum_{i=1}^{m}\left ( \Theta _{0} + \Theta _{1} x^{(i)}-y^{(i)} \right )

j=1:\frac{\partial J\left ( \Theta _{0}, \Theta _{1} \right ) }{\partial \Theta _{1}}=\frac{1}{m}\sum_{i=1}^{m}\left ( \Theta _{0} + \Theta _{1} x^{(i)}-y^{(i)} \right )\cdot x^{(i)}

带入公式:

\Theta _{0} =\Theta _{0}-\alpha \frac{1}{m}\sum_{i=1}^{m}\left ( \Theta _{0} + \Theta _{1} x^{(i)}-y^{(i)} \right )

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值