
【组会整理及心得】RSPrompter、DeSAM、CALIP、SpectFormer
利用大量训练数据(SA-1B),Meta AI Research 提出的SAM表现出显着的泛化和零样本能力。尽管如此,SAM作为一种与类别无关的实例分割方法,严重依赖于手动的先验信息,包括点、框和粗粒度掩码。此外,它在遥感图像分割任务上的性能尚未得到充分探索和演示。本文结合语义类别信息,设计了一种基于SAM基础模型的遥感图像自动实例分割方法。受提示学习的启发,本文提出了一种为 SAM 输入学习生成适当提示的方法,使得SAM能够为遥感图像生成语义可识别的分割结果,称之为RSPrompter。








