元胞自动机:森林火灾模拟(Python:numpy、seaborn)

目录

1.元胞自动机(Cellular Automation,CA)

2.森林火灾

3.伪代码

4.元胞自动机模拟森林火灾(Python实现)

(1)导入相关的库

(2)定义森林火灾函数(Forest_Fire函数)

①空位生长树木 (0 --> 1)

②周围树木燃烧 (1 --> -1)

③烧树木清除 (-1 --> 0)

④雷电击中正常树木 (1 --> -1)

(3)定义主函数(main函数)

(4)执行命令

5.森林火灾可视化呈现

(1)森林火灾各成分曲线图(趋势图)

(2)稳态分布图

(3)前置阶段演化图

第1时刻

第2时刻

第3时刻

第4时刻

第5时刻

第6时刻


1.元胞自动机(Cellular Automation,CA)

        元胞自动机(Cellular Automation,简称CA)是一个时间和空间都离散的动力系统,是一种常用的仿真方法。

        散布在规则格网中的每一元胞(cell)取有限的离散状态,遵循同样的作用规则,依据确定的局部规则作同步更新。大量元胞通过简单的相互作用而构成系统的演化。由冯诺依曼在20世纪50年代发明。

        元胞自动机不是由严格定义的物理方程或函数确定,而是由一系列规则构成凡是满足这些规则的模型都可以算作是元胞自动机模型。因此,元胞自动机是一类模型的总称,或者说是一个方法框架。其特点是时间、空间、状态都离散,每个变量只取有限多个状态,且其状态改变的规则在时间和空间上都是局部的。

元胞自动机的核心:状态和状态随时间演变的规则


2.森林火灾

<参考程序>

(1)正在燃烧的树变成空格位

(2)如果绿树格位最近邻居中有一个树在燃烧,则它变成正在燃烧的树

(3)在空格位,树以概率 p 生长;

(4)在最近的邻居中没有正在燃烧的树的情况下树以概率 f (闪电)变为正在燃烧的树

 


3.伪代码

 


4.元胞自动机模拟森林火灾(Python实现)

(1)导入相关的库

# 元胞自动机模拟森林火灾
import numpy as np
import random
import seaborn as sbn
import matplotlib.pyplot as plt

numpy库为科学计算库,用来处理多维数组(矩阵);

random库为Python标准库,用来生成随机数,描述森林火灾的随机性;

matplotlib库是最常用的绘图工具库,与seaborn库结合操作。

seaborn库底层是基于Matplotlib的,在此用来绘制热力图,使矩阵可视化(森林火灾可视化);


(2)定义森林火灾函数(Forest_Fire函数)

Forest_Fire函数如下,共有4个操作部分:

# 森林火灾函数
# 传入参数为:(1)当前的燃烧矩阵;(2)空格位 树的生长概率p;(3)正常位 树的燃烧概率f

# 假定:空格位 --> 0  正常位 --> 1   燃烧位 --> -1
# 总量:空格位 --> C  正常位 --> G   燃烧位 --> R

def Forest_Fire(current_matrix,p,f):
    matrix=current_matrix

    # (1)空位生长树木 (0 --> 1)   储存位置
    i_C_indexes = []
    j_C_indexes = []
    for i in range(area):   # 行循环
        for j in range(area):   # 列循环
            if matrix[i, j] == 0 and random.random()<p:
                i_C_indexes.append(i)
                j_C_indexes.append(j)
            else:
                pass


    # (2)周围树木燃烧 &  (1 --> -1)   储存位置,并存储上一时刻的燃烧数据
    fire_memory=np.where(matrix==-1)
    i_indexes=[]
    j_indexes=[]

    for i in range(area):   # 行循环
        for j in range(area):   # 列循环
            if matrix[i,j]==-1:
                try:
                    if matrix[i-1,j]==1:
                        i_indexes.append(i-1)
                        j_indexes.append(j)
                except:
                    pass

                try:
                    if matrix[i + 1, j] == 1:
                        i_indexes.append(i + 1)
                        j_indexes.append(j)
                except:
                    pass

                try:
                    if matrix[i , j-1] == 1:
                        i_indexes.append(i)
                        j_indexes.append(j-1)
                except:
                    pass

                try:
                    if matrix[i , j+1] == 1:
                        i_indexes.append(i)
                        j_indexes.append(j+1)
                except:
                    pass

            else:
                pass

    for k in range(len(i_indexes)):
        matrix[i_indexes[k],j_indexes[k]]=-1


    # (3)燃烧树木清除 (-1 --> 0)
    matrix[fire_memory]=0


    # (4)雷电击中正常树木 (1 --> -1)    储存位置
    i_indexes = []
    j_indexes = []

    for i in range(area):   # 行循环
        for j in range(area):   # 列循环
            if matrix[i, j] == 1 :

                # 判断最近邻居是否有树木燃烧
                try:
                    if matrix[i-1,j] ==-1:
                        continue
                    else:
                        pass
                except:
                    pass

                try:
                    if matrix[i+1,j] ==-1:
                        continue
                    else:
                        pass
                except:
                    pass

                try:
                    if matrix[i,j-1] ==-1:
                        continue
                    else:
                        pass
                except:
                    pass

                try:
                    if matrix[i,j+1] ==-1:
                        continue
                    else:
                        pass
                except:
                    pass


                # 树木被雷击中
                if random.random() < f:
                    i_indexes.append(i)
                    j_indexes.append(j)
                else:
                    pass

            else:
                pass

    for k in range(len(i_indexes)):
        matrix[i_indexes[k],j_indexes[k]]=-1

    # 完成空位生长树木的操作
    for k in range(len(i_C_indexes)):
        matrix[i_C_indexes[k],j_C_indexes[k]]=1

    return matrix

①空位生长树木 (0 --> 1)

# (1)空位生长树木 (0 --> 1)   储存位置
    i_C_indexes = []
    j_C_indexes = []
    for i in range(area):   # 行循环
        for j in range(area):   # 列循环
            if matrix[i, j] == 0 and random.random()<p:
                i_C_indexes.append(i)
                j_C_indexes.append(j)
            else:
                pass

        每当一个新的演化时间点到来时,首先要执行 空位生长树木 (0 --> 1) 的操作。若这一操作滞后,则会导致前一时刻燃烧的树木在这一时刻烧尽后重新生长为树木,故这一演化的优先级较高。并且需要将符合条件的坐标存储(而不是直接将矩阵元素更改),若不如此处理,则会导致中心灰烬点重焕生机后再次被周围的余火吞噬,无法达到 空位生长树木 (0 --> 1) 的效果。

        综上,该演化优先级最高并且需要储存符合要求的坐标位置。

②周围树木燃烧 (1 --> -1)

    # (2)周围树木燃烧   (1 --> -1)   储存位置,并存储上一时刻的燃烧数据
    fire_memory=np.where(matrix==-1)
    i_indexes=[]
    j_indexes=[]

    for i in range(area):   # 行循环
        for j in range(area):   # 列循环
            if matrix[i,j]==-1:
                try:
                    if matrix[i-1,j]==1:
                        i_indexes.append(i-1)
                        j_indexes.append(j)
                except:
                    pass

                try:
                    if matrix[i + 1, j] == 1:
                        i_indexes.append(i + 1)
                        j_indexes.append(j)
                except:
                    pass

                try:
                    if matrix[i , j-1] == 1:
                        i_indexes.append(i)
                        j_indexes.append(j-1)
                except:
                    pass

                try:
                    if matrix[i , j+1] == 1:
                        i_indexes.append(i)
                        j_indexes.append(j+1)
                except:
                    pass

            else:
                pass

    for k in range(len(i_indexes)):
        matrix[i_indexes[k],j_indexes[k]]=-1

        Python的 try-except 机制 可以很好地避免边界特殊情况导致的矩阵索引越界报错,从而高效简洁地完成算法处理。

        存储上一时刻的燃烧数据 fire_memory 的目的是为了在之后的树木烧尽操作中区分出上一时刻燃烧的树木,避免与当前时刻新燃烧的树木产生混淆。

        储存符合条件坐标的原因是避免当前时刻新燃烧的树木引燃树木(这是一个很严重的bug),所以需要先存储所有坐标信息,再统一赋新值处理。


③烧树木清除 (-1 --> 0)

    matrix[fire_memory]=0

        直接将上一操作存储的燃烧数据坐标 fire_memory 对应位置的元素归零,实现烧树木清除 (-1 --> 0)效果。


④雷电击中正常树木 (1 --> -1)

    # (4)雷电击中正常树木 (1 --> -1)    储存位置
    i_indexes = []
    j_indexes = []

    for i in range(area):   # 行循环
        for j in range(area):   # 列循环
            if matrix[i, j] == 1 :

                # 判断最近邻居是否有树木燃烧
                try:
                    if matrix[i-1,j] ==-1:
                        continue
                    else:
                        pass
                except:
                    pass

                try:
                    if matrix[i+1,j] ==-1:
                        continue
                    else:
                        pass
                except:
                    pass

                try:
                    if matrix[i,j-1] ==-1:
                        continue
                    else:
                        pass
                except:
                    pass

                try:
                    if matrix[i,j+1] ==-1:
                        continue
                    else:
                        pass
                except:
                    pass


                # 树木被雷击中
                if random.random() < f:
                    i_indexes.append(i)
                    j_indexes.append(j)
                else:
                    pass

            else:
                pass

    for k in range(len(i_indexes)):
        matrix[i_indexes[k],j_indexes[k]]=-1

        这一部分的算法实现过程与操作2类似,不再赘述。


    # 完成空位生长树木的操作
    for k in range(len(i_C_indexes)):
        matrix[i_C_indexes[k],j_C_indexes[k]]=1

    return matrix

        函数的最后完成第一步 空位生长树木 (0 --> 1) 的操作,最终返回一个矩阵(二维数组)。


(3)定义主函数(main函数)

# 主函数
# 传入参数为:(1)方形区域的边长;(2)模拟次数N;
(3)空格位 树的生长概率p;(4)正常位 树的燃烧概率f

def main(area,N,p,f):

    # 创建一个 area*area 的实验区域,该区域均为正常位
    matrix=np.ones([area,area]).astype("int")

    #matrix[random.randint(0,79),random.randint(0,79)]=-1

    # 开始进行森林火灾模拟 N次循环   (燃烧概率f引发森林火灾)
    for time in range(N):
        matrix=Forest_Fire(matrix,p,f)

        C_count.append(len(np.where(matrix==0)[0]))
        G_count.append(len(np.where(matrix == 1)[0]))
        R_count.append(len(np.where(matrix == -1)[0]))

        if time<=5:
            plt.figure(time+1, figsize=(19.20, 9.61))
            sbn.heatmap(matrix,
                        cmap=[(239 / 255, 29 / 255, 31 / 255),
                             (165 / 255, 165 / 255, 165 / 255),
                              (28 / 255, 172 / 255, 76 / 255)], annot=True)
            plt.savefig('C:/Users/熊锐成/Desktop/Math/{}.jpg'.format(time+1))


    plt.figure(7,figsize=(19.20, 9.61))
    T = [i for i in range(N+1)]

    plt.plot(T,C_count,label='Vacancy',lw=2,color=(165/255,165/255,165/255))
    plt.plot(T, G_count, label='Trees',lw=2, color=(28/255,172/255,76/255))
    plt.plot(T, R_count, label='Burning',lw=2, color=(239/255,29/255,31/255))

    plt.grid(linestyle=":")
    plt.legend()

    plt.savefig('C:/Users/熊锐成/Desktop/森林火灾曲线图')

    plt.show()

cmap的传参顺序反映到数值上为从小到大:

即先传入的红色对应 -1,再传入的灰色对应 0,最后传入的绿色对应 1。


(4)执行命令

global area
area=100

C_count=[0]
G_count=[area**2]
R_count=[0]


# 传入参数为:(1)方形区域的边长;(2)模拟次数N;
# (3)空格位 树的生长概率p;(4)正常位 树的燃烧概率f

final_matrix=main(area,100,0.25,0.01)

plt.figure()
sbn.heatmap(final_matrix,
            cmap = [(239/255,29/255,31/255),
                    (165/255,165/255,165/255),
                    (28/255,172/255,76/255)], annot=True)
plt.show()


5.森林火灾可视化呈现

(1)森林火灾各成分曲线图(趋势图)

 


(2)稳态分布图

 


(3)前置阶段演化图

第1时刻

第2时刻

 

第3时刻

 

第4时刻

 

第5时刻

 

第6时刻

 

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值