英语翻译8

https://acs.jxnu.edu.cn/problem/ICPCJX2020A

描述:

Huanhuan challenges you to a simple math problem.

Define F(x)F(x) as the sum of the decimal digits of xx.

For example: F(123)=1+2+3=6F(123)=1+2+3=6, F(700)=7+0+0=7F(700)=7+0+0=7.

Huanhuan wants you to calculate the sum of F(j)F(j) for every i,ji,j that satisfy 1≤j≤i≤n1≤j≤i≤n and i,ji,j are coprime.

More formally, calculate ∑i=1n∑j=1i[gcd(j,i)=1]F(j)∑i=1n∑j=1i[gcd(j,i)=1]F(j).

输入:

There are only one test case with a single integer n(1≤n≤105)n(1≤n≤105).

输出:

Print one integer, the answer of ∑i=1n∑j=1i[gcd(j,i)=1]F(j)∑i=1n∑j=1i[gcd(j,i)=1]F(j).

样例输入:

3

样例输出:

5

题目大意:

欢欢向你挑战一个简单的数学题,把F(X)F(X)定义为xx的十进制数之和。
例如:F(123)=1+2+3=6F(123)=1+2+3=6,F(700)=7+0+0=7F(700)=7+0+0=7
满足 1≤j≤i≤n1≤j≤i≤n ji.j是相互作用的。
更正式地说,计算>i=1n>j=1i[gcd(j,i)=1]F(J)>i=1n>j=1i[gcd(j,i)=1]F(J)。

输入:

只有一个单整数n(1≤n≤105)n(1≤n≤105)的测试用例。

输出:


打印一个整数,回答为>i=1n>j=1i[gcdj,i)=1]F(I)>i=1n>j=1i[gcdj,i)=1]F()。

样例输入:

3

样例输出:

5


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值