springboot+echarts +mysql制作数据可视化大屏(四图) 作者水平低,如有错误,恳请指正!谢谢!!!!!项目简单,适合大学生参考分类专栏还有其它的可视化博客哦!专栏地址:https://blog.csdn.net/qq_55906442/category_11906804.html?spm=1001.2014.3001.5482目录 一、数据源二、所需工具三、项目框架搭建四、代码编写4.1 区域销量统计条形图4.2 订单金额折线图4.3 平均支付时间统计4.4 订单金额统计五、大屏编写成果展示: 1)可以使用自己的MySQL数据库;2)使用我提供的数据。(要
时间同步/集群时间同步/在线/离线 NTP(Network Time Protocol)网络时间协议,是用来使计算机时间同步的一种协议,它可以使计算机对其服务器或时钟源做同步化,它可以提供高精准度的时间校正(LAN上与标准间差小于1毫秒,WAN上几十毫秒),且可介由加密确认的方式来防止恶毒的协议攻击。NTP的目的是在无序的Internet环境中提供精确和健壮的时间服务。
scala(八):模式匹配 Scala中的模式匹配类似于Java中的switch语法。模式匹配语法中,采用match关键字声明,每个分支采用case关键字进行声明,需要匹配时,会从第一个case分支开始,如果匹配成功,会执行对应的逻辑代码;匹配不成功,继续执行下一个分支进行判断。如果所有case都不匹配,那么会执行case _分支,类似于Java中default语句。注:(1)如果所有case都不匹配,那么会执行case _ 分支,类似于Java中default语句,若此时没有case _ 分支,那么会抛出MatchError。 (2
scala(七):集合常用函数 过滤filter,映射/转换map,扁平化flatten,扁平化+映射flatMap,分组groupBy,简化/归约reduce,折叠fold。简化(归约):通过指定的逻辑将集合的数据进行聚合,从而减少数据,最终获取结果。sorted对一个集合进行自然排序,通过传递隐式的Ordering。sortWith基于函数的排序,通过一个comparator。sortBy对一个属性或多个属性进行排序,通过它的类型。函数,实现自定义排序的逻辑。折叠:化简的一种特殊情况。
scala(六):集合-数组、列表list、set集合、map集合、元组 (1)Scala的集合有三大类:序列Seq、集Set、映射Map,所有的集合都扩展自Iterable特质。(2)对于几乎所有的集合类,Scala都同时提供了可变和不可变的版本,分别位于以下两个包。不可变集合:scala.collection.immutable可变集合: scala.collection.mutable不可变集合,就是指该集合对象不可修改,每次修改就会返回一个新对象,而不会对原对象进行修改。类似于java中的String对象。
scala(五):面向对象-包、类型、继承和多态、抽象类、单列对象、特质 基本语法:【修饰符】class 类名 {类体}(1)Scala语法中,类并不声明为public,所有这些类都具有公有可见性(即默认就是public);(2)一个Scala源文件可以包含多个类;
scala(四):函数式编程-函数基础、函数高级 闭包:如果一个函数,访问到了它的外部(局部)变量的值,那么这个函数和他所处的环境,称为闭包。将问题分解成一个一个的步骤,将每个步骤进行封装,通过调用这些封装好的步骤,解决问题。解决问题,分解对象,行为,属性,然后通过对象的关系以及行为的调用来解决问题。,直到我们首次对此取值,该函数才会执行。这种函数我们称之为惰性函数。函数柯里化:把一个参数列表的多个参数,变成多个参数列表。)为完成某一功能的程序语句的集合,称为函数。函数的本质:函数可以当做一个值进行传递。对象的本质:对数据和行为的一个封装。
scala(三):流程控制-分支控制、嵌套循环、for、while、do…while循环、循环中断、多支循环 Scala内置控制结构特地去掉了break和continue是为了更好的适应函数式编程,推荐使用函数式的风格解决break和continue的功能而不是一个关键字。4)while中没有返回值,当要用该语句来计算并返回结果时,要不可避免的使用变量,而变量需要声明在while循环的外面,就等同于循环的内部对外部的变量造成了影响。1)将一个循环放在另一个循环体内,就形成了嵌套循环。在一个分支结构中完整的嵌套另一个完整的分支结构,里面的分支的结构称为内层,外面的分支结构称为外层,嵌套分支不要超过3。
Scala:概述 Spark是新一代内存级大数据计算框架,是大数据的重要内容。Spark是使用Scala编写的。为了更好的学习Spark,需要掌握Scala这门语言。Spark的兴起,带动Scala语言的发展。Scala和Java的关系学Scala的人一般都会Java,Scala是基于Java的,我们需要把Scala和Java以及JVM之间的关系搞清楚。Scala、Java和JVM的关系图Scala语言特点。
scala(一):变量和数据类型 (1)使用tab实现缩进,默认整体向右移动;shift+tab整体向左移;(2)使用ctrl + alt + L来进行格式化;(3)运算符两边习惯性各加一个空格;(4)一行最长不超过80个字符,超过的换行,尽量保持格式优雅。变量和常量常量:在执行过程中值不会被改变的量。变量类型 变量名称 = 初始值 int a = 5final常量类型 常量名称 = 初始值 final int a = 5。
Windows安装Scala:scala安装、idea的scala插件安装、helloworld案例 在plugins中,选择install plugin from disk…,选择下载好的插件路径后点击OK,然后重启idea就可以了。在plugins中,直接搜索Scala,点击下载,然后重启idea。(1)在系统变量中配置,新增一个SCALA_HOME。3.在src\main下创建scala目录,4.在src/main/scala下创建包名。(2)在系统变量的path中添加。(1)Windows + R键。(3)输入Scala后回车。scala安装完成!2. 引入Scala框架。5. 创建scala类。
Azkaban(四):进阶案例-邮箱报警案例 (4)将email.flow和azkaban.project文件以zip格式压缩打包。(3)创建并编写email.flow和azkaban.project文件。设置成功或者失败时要发送到的邮箱。(2)重启web-server。(3)获取授权码(只显示一次)(5)web server操作。(1)注册126邮箱;(2)开启SMTP服务。
Azkaban(三):进阶案例-java作业类型案例、条件工作流案例、定时执行案例 Azkaban中预置了几个特殊的判断条件,称为预定义宏。预定义宏会根据所有父job的完成情况进行判断,再决定是否执行。可用的预定义宏如下:1)all_success:表示父job全部成功才执行(默认);2)all_done:表示父job全部完成才执行;3)all_failed:表示父job全部失败才执行;4)one_success:表示父job至少一个成功才执行;5)one_failed:表示父job至少一个失败才执行;案例需求:jobA和jobB分别执行。
Azkaban(二):基础案例集-依赖案例、自动重试案例、手动调节是否执行案例 注:azkaban.project和second.flow保存时注意类型要选择为All type (*.*)。注:azkaban.project和third.flow保存时注意类型要选择为All type (*.*)。注:azkaban.project和four.flow保存时注意类型要选择为All type (*.*)。2.将azkaban.project和four.flow压缩,以zip格式压缩,文件名一定要是英文。手动调节job是否执行案例完成!失败自动重试案例完成!4.web server操作。
Azkaban(一):入门-安装及案例 一个完整的系统通常都是由大量任务单元组成:Shell脚本程序、Java程序、MapReduce程序、Hive脚本等。复杂的任务调度:现成的开源调度系统Ooize、Azkaban、Airflow、DolphinScheduler等。3.将azkaban.project和first.flow压缩,以zip格式压缩,文件名一定要是英文。Ooize是一个重量级的任务调度系统,功能全面,但配置使用更复杂;(2)再开启web server,进入web server目录。hello world案例完成!
flume数据流监控 gmond(Ganglia Monitoring Daemon):是一种轻量级服务,安装在每台需要收集指标数据的节点主机上。使用gmond可以很容易收集很多系统指标数据,如CPU、内存、磁盘、网络和活跃进程的数据等。gweb(Ganglia Web):Ganglia可视化工具,gweb是一种利用浏览器显示gmetad所存储数据的PHP前端。在Web界面中以图表方式展现集群的运行状态下收集的多种不同的指标数据。(3)在Hadoop01、Hadoop02、Hadoop03、Hadoop04修改配置文件。
flume笔记(三):自定义-自定义interceptor/自定义source/自定义sink (1)需求用Flume采集服务器本地日志,按照日志类型的不同,将不同种类的日志发往不同的分析系统。(2)需求分析一台服务器产生的日志类型有很多种,不同类型的日志需要发送到不同的分析系统。此时会用到Flume拓扑结构中的Multiplexing结构。Multiplexing的原理是,根据event中Header的某个key的值,将不同的event发送到不同的Channel中。我们需要自定义一个Interceptor,为不同类型的event的Header中的key赋予不同的值。