点云去噪【论文复现】:基于不同尺度算法的激光雷达点云去噪研究

本文介绍了基于不同尺度的激光雷达点云去噪方法,包括动态距离阈值函数处理大尺度噪声和双边滤波平滑小尺度噪声。通过迭代删除重复点和噪声点,实现点云数据的优化,提高三维重构模型的光滑性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


本文为CSDN晚意丶3D原创,转载请表明原文出处

———————————————————————————————————————

点云去噪【论文复现】:基于不同尺度算法的激光雷达点云去噪研究

概述

激光进行多趟扫描时,直接删除雷达自转旋转角度、回波距离相同的重复点,均值法删除角度相同、回波距离不同的点,这样减少了数据量,加快了处理速度。

当激光雷达扫描到非目标体时,存在偏离主体点云:悬浮在主体点云上方的稀疏点;距离主体大片点云中心较远、小而密集、明显的离群点。这些点云数据使得被测边界外的光条与边界内的光条无法有效地区分,通常为大尺度噪声。

对于大尺度噪声,该文用了一个动态距离阈值函数,,动态调整统计滤波的阈值范围:
在这里插入图片描述
在这里插入图片描述
图中可以看到迭代次数增加系数先慢后

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值