pytorch练习-处理多维特征输入

1、乘的权重(w)都一样,加的偏置(b)也一样。b变成矩阵时使用广播机制。神经网络的参数w和b是网络需要学习的,其他是已知的。

2、学习能力越强,有可能会把输入样本中噪声的规律也学到。我们要学习数据本身真实数据的规律,学习能力要有泛化能力。

3、该神经网络共3层;第一层是8维到6维的非线性空间变换,第二层是6维到4维的非线性空间变换,第三层是4维到1维的非线性空间变换。

4、本算法中torch.nn.Sigmoid() # 将其看作是网络的一层,而不是简单的函数使用 

#引入numpy
import numpy as np
#引入torch
import torch
 
#引入数据集,用np中的加载文本功能,加载文本。分割符为逗号。数据类型为32位浮点型
xy = np.loadtxt('diabetes.csv',delimiter=',',dtype=np.float32)
#x的数据是用torch中的来自numpy提取数据,:代表所有行,:-1代表除了最后一列的所有列。
x_data = torch.from_numpy(xy[:,:-1])
#y的数据是torch中的来自numpy提取数据,:代表所有行,【-1】代表最后一列
y_data = torch.from_numpy(xy[:,[-1]])
 
#构造模型
class Model(torch.nn.Module):
    #初始化自身对象
    def __init__(self):
        #super调用父类初始化器
        super(Model,self).__init__()
        #构造一个输入是8维,输出是6维的线性模型
        self.linear1 = torch.nn.Linear(8,6)
        #构造一个输入是6维,输出是4维的线性模型
        self.linear2 = torch.nn.Linear(6,4)
        #构造一个输入是4维,输出是1维的线性模型
        self.linear3 = torch.nn.Linear(4,1)
        #构造一个逻辑回归模型
        self.sigmoid = torch.nn.Sigmoid()


    #前向传播
    def forward(self,x):
        #用sigmoid激活线性模型1,也就是将线性模型1代入到sigmoid里面
        x = self.sigmoid(self.linear1(x))
        #用sigmoid激活线性模型2
        x = self.sigmoid(self.linear2(x))
        #用sigmoid激活线性模型3
        x = self.sigmoid(self.linear3(x))
        #返回x
        return x

#实例化模型
model = Model()
 
#构造二分类交叉熵求损失降维求平均
criterion = torch.nn.BCELoss(reduction='mean')
#优化模块中的SGD模型中的所有参数,学习率为0.1
optimizer = torch.optim.SGD(model.parameters(),lr=0.1)
 
#循环100次
for epoch in range(100):
    #将x代入模型求y的预测值
    y_pred = model(x_data)
    #将y的预测值和真实值代入损失函数中求损失值
    loss = criterion(y_pred,y_data)
    #输出循环次数,损失值,用item设置损失值为标量
    print(epoch,loss.item())
    #梯度归零
    optimizer.zero_grad()
    #损失反向传播
    loss.backward()
    #更新权重
    optimizer.step()

参考链接

https://blog.csdn.net/bit452/article/details/109682078

更改epoch为100000,以准确率acc为评价指标,源代码和结果如下

import numpy as np
import torch
import matplotlib.pyplot as plt
 
# prepare dataset
xy = np.loadtxt('diabetes.csv', delimiter=',', dtype=np.float32)
x_data = torch.from_numpy(xy[:, :-1]) # 第一个‘:’是指读取所有行,第二个‘:’是指从第一列开始,最后一列不要
print("input data.shape", x_data.shape)
y_data = torch.from_numpy(xy[:, [-1]]) # [-1] 最后得到的是个矩阵
 
# print(x_data.shape)
# design model using class
 
 
class Model(torch.nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.linear1 = torch.nn.Linear(8, 6)
        self.linear2 = torch.nn.Linear(6, 4)
        self.linear3 = torch.nn.Linear(4, 2)
        self.linear4 = torch.nn.Linear(2, 1)
        self.sigmoid = torch.nn.Sigmoid()
 
    def forward(self, x):
        x = self.sigmoid(self.linear1(x))
        x = self.sigmoid(self.linear2(x))
        x = self.sigmoid(self.linear3(x)) # y hat
        x = self.sigmoid(self.linear4(x))  # y hat
        return x
 
 
model = Model()
 
# construct loss and optimizer
# criterion = torch.nn.BCELoss(size_average = True)
criterion = torch.nn.BCELoss(reduction='mean')
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
 
 
# training cycle forward, backward, update
for epoch in range(1000000):
    y_pred = model(x_data)
    loss = criterion(y_pred, y_data)
    # print(epoch, loss.item())
 
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
 
    if epoch%100000 == 99999:
        y_pred_label = torch.where(y_pred>=0.5,torch.tensor([1.0]),torch.tensor([0.0]))
 
        acc = torch.eq(y_pred_label, y_data).sum().item()/y_data.size(0)
        print("loss = ",loss.item(), "acc = ",acc)
 
 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值