Python:实现骰子游戏

本文介绍了一种通过Python实现的轻松任务分配方式,利用随机骰子决定工作分配,适合团队协作中的趣味决策。源码解析并展示了如何创建自定义面数的骰子游戏。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

不知道大家在分配任务纠结的时候,像不像我一样喜欢这种丢骰子来决定如何分配

这就是一个简单的摇数游戏,可以用来比较谁摇出来的数字大,源码附下面: 

from random import randint
Number = True
class Shaizi():
    """创建(骰子)Shaizi这个类"""
    def __init__(self):
        self.sides = 6
        """骰子面sides的默认值设为6"""
    def roll_Shaizi(self):
        w = int(self.sides)
        x = randint(1, w)
        z = str(x)
        print('好的,你摇到了:'+z+".")
    def update(self, number):
        self.sides = number
    def sides_value(self):
        print('value is :'+self.sides)
while Number:
    print("欢迎使用幸运骰子!")
    shuru = input("你要创建几面的骰子?请输入:")
    x = str(shuru)
    shuru1 = Shaizi()
    shuru1.update(x)
    print('恭喜你创建了一个骰子')
    print('开始摇骰子')
    print('摇骰子中...')
    print('摇骰子中...')
    print('摇骰子中...')
    shuru1.roll_Shaizi()
    y = input('是否继续 yes/no')
    print(y)
    if y != 'no':
        Number = True
    else:
        print('谢谢你的使用!')
        Number = False

我来解读一下这段简单的代码:

1.与猜拳游戏性质相似,都是导入了随机数random这个模块

2.引入了面向对象的基础知识,即创建类这些的相关知识

3.int()的作用是转换数值的形式,即转换为整型

### 回答1: GMM-EM算法的伪代码:// 迭代k次 for (k=0; k<K; k++) { // E步骤 // 计算每个样本属于每个模型的概率 for (i=0; i<N; i++) { for (j=0; j<M; j++) { p[i][j] = pi[j]*Gaussian(x[i],mu[j],sigma[j]); } } // 计算每个样本属于每个模型的期望值 for (i=0; i<N; i++) { for (j=0; j<M; j++) { q[i][j] = p[i][j]/sigma[j]; } } // M步骤 // 更新模型参数 for (j=0; j<M; j++) { pi[j] = pi[j] + q[i][j]; mu[j] = mu[j] + q[i][j]*x[i]; sigma[j] = sigma[j] + q[i][j]*(x[i] - mu[j])*(x[i] - mu[j]); } } ### 回答2: GMM-EM(高斯混合模型期望最大化)算法是一种用于估计高斯混合模型参数的迭代优化算法。下面是GMM-EM算法的伪代码: 输入:观测数据X,高斯分量个数K 输出:高斯混合模型的参数 1. 初始化高斯混合模型参数: - 初始化每个高斯分量的均值向量mu_k,协方差矩阵sigma_k和混合系数pi_k - 使用随机值或者其他预设的初始值进行初始化 2. 迭代优化: - 重复以下步骤,直到收敛: 1. Expectation 步骤: - 计算每个样本属于每个高斯分量的后验概率gamma(z_{nk}),即样本x_n由高斯分量k生成的概率 - 使用当前的参数值计算gamma(z_{nk}),即根据当前参数估计后验概率 2. Maximization 步骤: - 更新均值向量mu_k: - 对于每个高斯分量k,计算新的均值mu_k: - mu_k = (sum_n(gamma(z_{nk})*x_n)) / (sum_n(gamma(z_{nk}))) 其中,sum_n表示对所有样本求和 - 更新协方差矩阵sigma_k: - 对于每个高斯分量k,计算新的协方差矩阵sigma_k: - sigma_k = (sum_n(gamma(z_{nk})*(x_n - mu_k)*(x_n - mu_k).T)) / (sum_n(gamma(z_{nk}))) 其中,sum_n表示对所有样本求和,.T表示矩阵的转置操作 - 更新混合系数pi_k: - 对于每个高斯分量k,计算新的混合系数pi_k: - pi_k = sum_n(gamma(z_{nk})) / N 其中,sum_n表示对所有样本求和,N为样本总数 3. 返回最终的高斯混合模型参数 GMM-EM算法通过交替进行Expectation步骤和Maximization步骤,迭代地优化高斯混合模型的参数,直到收敛到最优参数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值