算法题的时间复杂度和空间复杂度计算(超详细通俗易懂版)

1.时间复杂度


1.1 时间复杂度的概念


时间复杂度的定义:

在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。

请注意:时间复杂度不是在算它的执行时间,因为执行时间是没有标准的,这个和我们的硬件设备和机器环境有关系。

一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法 的时间复杂度。

找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。

举一个例子:

// 请计算一下Func1中++count语句总共执行了多少次?
void Func1(int N)
{
int count = 0;
for (int i = 0; i < N ; ++ i)
{
 for (int j = 0; j < N ; ++ j)
 {
 ++count;        //这里count++执行N*N次
 }
}
 
for (int k = 0; k < 2 * N ; ++ k)
{
 ++count;        //这里count++执行2*N次
}
int M = 10;
while (M--)
{
 ++count;        //这里count++执行M次
}
 
 
//所以++count总共执行  N^2+2*N+M 次

实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这 里我们使用大O的渐进表示法。

1.2 大O的渐进表示法

时间复杂度和空间复杂度一般都使用大O的渐进表示法进行表示,大O的渐进表示法规则如下:

1、所有常数都用常数1表示。
2、只保留最高阶项。
3、如果最高阶项存在且不是1,则去除与这个项的系数,得到的结果就是大O阶。

举一个例子:

// 计算Func2的时间复杂度?
void Func2(int N)           
{
 int count = 0;
 for (int k = 0; k < 2 * N ; ++ k)
 {
 ++count;        //2*N
 }
 int M = 10;
 while (M--)
 {
 ++count;        //10
 }
 printf("%d\n", count);
}
 
//2*N+10
//当N趋于无限大的时候,10和2对于整体的效果影响不大,所以舍去得到N
//注意N和2*N+10是一个量级的
//
//所以Fun2的算法复杂度为   O(N)=N

另外有些算法的时间复杂度存在最好、平均和最坏情况:

最坏情况:任意输入规模的最大运行次数(上界)

平均情况:任意输入规模的期望运行次数

最好情况:任意输入规模的最小运行次数(下界)

举个例子:

在一个长度为N数组中搜索一个数据x

最好情况:1次找到

最坏情况:N次找到

平均情况:N/2次找到

在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)。

一般情况关注的是算法的最坏运行情况,所以以最坏情况的时间复杂度为准。

1.3常见时间复杂度计算举例

1.3.1.计算两个循环分别对应两个变量有关的的时间复杂度

// 计算Func3的时间复杂度?
void Func3(int N, int M)
{
    int count = 0;
    for (int k = 0; k < M; ++k)
    {
        ++count;
    }
    for (int k = 0; k < N; ++k)
    {
        ++count;
    }
    printf("%d\n", count);

答案参考如下:

1.3. 2. 计算只与常量数字有关的的时间复杂度 


// 计算Func4的时间复杂度?
void Func4(int N)
{
    int count = 0;
    for (int k = 0; k < 100; ++k)
    {
        ++count;
    }
    printf("%d\n", count);
}

答案参考如下:

 

 1.3.3. 计算strchr的时间复杂度 

// 计算strchr的时间复杂度?
const char * strchr ( const char * str, int character );

答案参考如下: 

  1.3.4计算冒泡排序BubbleSort的时间复杂度

// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{
 assert(a);
 for (size_t end = n; end > 0; --end)
 {
 int exchange = 0;
 for (size_t i = 1; i < end; ++i)
 {
 if (a[i-1] > a[i])
 {
 Swap(&a[i-1], &a[i]);
 exchange = 1;
 }
 }
 if (exchange == 0)
 break;
 }
}

答案参考如下: 

1.3.5 计算二分法BinarySearch的时间复杂度

// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{
 assert(a);
 int begin = 0;
 int end = n-1;
 // [begin, end]:begin和end是左闭右闭区间,因此有=号
 while (begin <= end)
 {
 int mid = begin + ((end-begin)>>1);
 if (a[mid] < x)
 begin = mid+1;
 else if (a[mid] > x)
 end = mid-1;
 else
 return mid;
 }
 return -1;
}

答案参考如下: 

 1.3.6计算阶乘递归的时间复杂度

 
// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{
    if (0 == N)
        return 1;
 
    return Fac(N - 1) * N;
}

 答案参考如下:

 1.3.7计算斐波那契函数的时间复杂度

 //计算斐波那契函数的时间复杂度
int Fibonacci1(int N)
{
    if (N == 0||N == 1)
        return 1;
    else
        return Fibonacci1(N - 1) + Fibonacci1(N - 2);
}

我们知道,使用递归法求斐波那契数,当我们要求某一个斐波那契数时,需要知道他的前两个斐波那契数,然后相加得出。那么当我们要知道第N个斐波那契数时,递归的次数如下图: 

因为右下角的递归函数会提前结束,所以图中三角形必定有一块是没有数据的,但是当N趋于无穷时,那缺省的一小块便可以忽略不计,这时总共调用斐波那契函数的次数为:

这是一个等比数列的求和,最后得出结果为:2N - 1 。
保留最高阶项后,用大O的渐进表示法表示斐波那契函数的时间复杂度为:O(2N) 。

注:递归算法的时间复杂度 = 递归的次数 * 每次递归函数中的次数。

2.空间复杂度


空间复杂度是对一个算法在运行过程中临时占用存储空间大小的量度。空间复杂度不是程序占用了多少字节的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。空间复杂度计算规则基本跟时间复杂度类似,也使用大O渐进表示法。

示例一:

//计算冒泡排序函数的空间复杂度
void BubbleSort(int* a, int N)
{
    assert(a);
    for (int i = 0; i < N; i++)
    {
        int exchange = 0;
        for (int j = 0; j < N - 1 - i; j++)
        {
            if (a[j]>a[j + 1])
            {
                int tmp = a[j];
                a[j] = a[j + 1];
                a[j + 1] = tmp;
                exchange = 1;
            }
        }
        if (exchange == 0)
            break;
    }
}

冒泡排序函数中使用了常数个额外空间(即常数个变量),所以用大O的渐进表示法表示冒泡排序函数的空间复杂度为O(1) 。

示例二:

//计算阶乘递归函数的空间复杂度
long long Factorial(size_t N)
{
    return N < 2 ? N : Factorial(N - 1)*N;
}

阶乘递归函数会依次调用Factorial(N),Factorial(N-1),…,Factorial(2),Factorial(1),开辟了N个空间,所以空间复杂度为O(N) 。

注:递归算法的空间复杂度通常是递归的深度(即递归多少层)。

示例三:

// 使用递归计算Fibonacci的空间复杂度
// 返回斐波那契数列的前n项
long long Fib(size_t N)
{
 if(N < 3)
 return 1;
 
 return Fib(N-1) + Fib(N-2);
}

空间复杂度为树的高度:h即o(n). 

 

先计算一下在主函数中重复调用两个函数,函数所占用的空间大小。 

示例四

//计算用数组实现还有用变量实现的斐波拉契数列的空间复杂度
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{
 if(n==0)
 return NULL;
 
 long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));
 fibArray[0] = 0;
 fibArray[1] = 1;
 for (int i = 2; i <= n ; ++i)
 {
 fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
 }
 return fibArray;
}

用数组实现斐波拉契数列的空间复杂度:O(N).

用三个变量来回计算斐波拉契数列的空间复杂度是:O(N).

常用时间复杂度所耗费的时间从小到大依次是o(1)<o(log2n)<o(n)<o(nlog2n)<o(n^2)<o(n^3)<o(2^n)<o(n!)<o(n^n). 

  • 24
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值