从循环神经网络(RNN)到长短期记忆网络(LSTM) 大部分模型都只能处理单独的输入,然而,当某些任务需要提取各个输入之间的时序信息时,只对每个输入进行单独的处理是不够的,需要处理的是将各个输入连成的整个序列,基于此RNN诞生了!
生成对抗网络(GAN)详解 生成对抗网络(Generative Adversarial Network, GAN)是由IanGoodfellow于2014年在《Generative Adversarial Nets》中提出的模型。
【知识蒸馏】(附代码) 知识蒸馏是人工智能领域重要的模型压缩方法,在自然语言处理、计算机视觉、多模态学习、预训练大模型领域有广泛应用。通过师徒传授,将大规模教师模型的知识传递给轻量化学生网络,实现模型压缩和部署。