日常打卡算法题
题目:给你一个二叉树的根节点 root ,判断其是否是一个有效的二叉搜索树。
有效二叉搜索树定义如下:
1.节点的左子树只包含 小于 当前节点的数。
2.节点的右子树只包含 大于 当前节点的数。
3.所有左子树和右子树自身必须也是二叉搜索树。


给出了如下二叉树的类定义
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
解题思路:
首先我们分析一下题目,题目很简单,就是判断给定的二叉树是否是二叉搜索树。
二叉搜索树:
1.对于该二叉树任何一个结点的左子树的最大值小于该结点的值
2.对于该二叉树任何一个结点的右子树的最小值大于该结点的值
3.对于该二叉树任何一个结点的左右子树都是二叉搜索树
设置上下界:
每次向左递归的时候,保持原有的最小值不变,将当前中间节点的值设置为上界
每次向右递归的时候,保持原有的最大值不变,将当前中间节点的值设置为下界
设置递归出口:
很显然,如果当前结点的值不满足上下界的条件,那么该子树就不是二叉搜索树,根节点也就不满足情况。
public boolean isValidBST(TreeNode root){
return isValidBST(root,10000000000L,-10000000000L);
}
public boolean isValidBST(TreeNode root,long top,long low) {
if (root.val <= low || root.val >= top){
return false;
}
boolean left = false;
boolean right = false;
if(root.left != null){
left = isValidBST(root.left,root.val,low);
}else {
left = true;
}
if (root.right != null){
right = isValidBST(root.right,top, root.val);
}else {
right = true;
}
if (left && right){
return true;
}else {
return false;
}
}
剪枝优化:
代码验证二叉排序树一定会走过所有结点,如果该二叉树就是排序二叉树,那么毫无疑问所有结点都会验证一遍,但是如果该树不是排序二叉树,其他递归的路径任然会继续验证下去,所以在方法外可以设置一个全局变量boolean flag = true;表示还没有结点不满足,当出现不满足时设置为false,此时在进方法初判断flag,如果为false直接取消代码运行。
boolean flag = true;
public boolean isValidBST(TreeNode root){
return isValidBST(root,10000000000L,-10000000000L);
}
public boolean isValidBST(TreeNode root,long top,long low) {
if(!flag){
return false;
}
if (root.val <= low || root.val >= top){
return false;
}
boolean left = false;
boolean right = false;
if(root.left != null){
left = isValidBST(root.left,root.val,low);
}else {
left = true;
}
if (root.right != null){
right = isValidBST(root.right,top, root.val);
}else {
right = true;
}
if (left && right){
return true;
}else {
return false;
}
}

1109

被折叠的 条评论
为什么被折叠?



