目录
学习链接:代码随想录
101. 孤岛的总面积
题目链接
题目描述
给定一个由 1(陆地)和 0(水)组成的矩阵,岛屿指的是由水平或垂直方向上相邻的陆地单元格组成的区域,且完全被陆地单元格包围。孤岛是那些位于矩阵内部、所有单元格都不接触边缘的岛屿。
现在你需要计算所有孤岛的总面积,岛屿面积的计算方式为组成岛屿的陆地的总数。
输入描述
第一行包含两个整数 N, M,表示矩阵的行数和列数。之后 N 行,每行包含 M 个数字,数字为 1 或者 0。
输出描述
输出一个整数,表示所有孤岛的总面积,如果不存在孤岛,则输出 0。
题解:将周边的1以及相邻的1都置成0,计算孤岛的总面积
import java.util.Scanner;
public class Main {
// 保存四个方向
static int[][] dir = { {-1, 0}, {0, -1}, {1, 0}, {0, 1} };
public static void dfs(int[][] grid, int x, int y) {
grid[x][y] = 0;
for (int[] d : dir) {
int nextX = x + d[0];
int nextY = y + d[1];
// 超过边界
if (nextX < 0 || nextX >= grid.length || nextY < 0 || nextY >= grid[0].length) continue;
// 符合条件
if (grid[nextX][nextY] == 0) continue;
dfs(grid, nextX, nextY);
}
}
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int n = scanner.nextInt();
int m = scanner.nextInt();
int[][] grid = new int[n][m];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
grid[i][j] = scanner.nextInt();
}
}
// 从左侧边,和右侧边 向中间遍历
for (int i = 0; i < n; i++) {
if (grid[i][0] == 1) dfs(grid, i, 0);
if (grid[i][m - 1] == 1) dfs(grid, i, m - 1);
}
// 从上边和下边 向中间遍历
for (int j = 0; j < m; j++) {
if (grid[0][j] == 1) dfs(grid, 0, j);
if (grid[n - 1][j] == 1) dfs(grid, n - 1, j);
}
int count=0;
// 计算孤岛的总面积
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (grid[i][j] == 1) count++;
}
}
System.out.println(count);
scanner.close();
}
}
102. 沉没孤岛
题目链接
题目描述
给定一个由 1(陆地)和 0(水)组成的矩阵,岛屿指的是由水平或垂直方向上相邻的陆地单元格组成的区域,且完全被水域单元格包围。孤岛是那些位于矩阵内部、所有单元格都不接触边缘的岛屿。
现在你需要将所有孤岛“沉没”,即将孤岛中的所有陆地单元格(1)转变为水域单元格(0)。
输入描述
第一行包含两个整数 N, M,表示矩阵的行数和列数。
之后 N 行,每行包含 M 个数字,数字为 1 或者 0,表示岛屿的单元格。
输出描述
输出将孤岛“沉没”之后的岛屿矩阵。 注意:每个元素后面都有一个空格
题解:孤岛沉没变为水
1.将边界以及相邻陆地先置为2,将水池置为1
2.将2的位置置为1,将1的位置置为0
import java.util.Scanner;
public class Main {
// 保存四个方向
static int[][] dir = { {-1, 0}, {0, -1}, {1, 0}, {0, 1} };
public static void dfs(int[][] grid, int x, int y) {
grid[x][y] = 2;
for (int[] d : dir) {
int nextX = x + d[0];
int nextY = y + d[1];
// 超过边界
if (nextX < 0 || nextX >= grid.length || nextY < 0 || nextY >= grid[0].length) continue;
// 不符合条件,不继续遍历
if (grid[nextX][nextY] == 0 || grid[nextX][nextY] == 2) continue;
dfs(grid, nextX, nextY);
}
}
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int n = scanner.nextInt();
int m = scanner.nextInt();
int[][] grid = new int[n][m];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
grid[i][j] = scanner.nextInt();
}
}
// 步骤一:
// 从左侧边,和右侧边 向中间遍历
for (int i = 0; i < n; i++) {
if (grid[i][0] == 1) dfs(grid, i, 0);
if (grid[i][m - 1] == 1) dfs(grid, i, m - 1);
}
// 从上边和下边 向中间遍历
for (int j = 0; j < m; j++) {
if (grid[0][j] == 1) dfs(grid, 0, j);
if (grid[n - 1][j] == 1) dfs(grid, n - 1, j);
}
// 步骤二、步骤三
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (grid[i][j] == 1) grid[i][j] = 0;
if (grid[i][j] == 2) grid[i][j] = 1;
}
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
System.out.print(grid[i][j] + " ");
}
System.out.println();
}
scanner.close();
}
}
103. 高山流水
题目链接
题目描述
现有一个 N × M 的矩阵,每个单元格包含一个数值,这个数值代表该位置的相对高度。矩阵的左边界和上边界被认为是第一组边界,而矩阵的右边界和下边界被视为第二组边界。
矩阵模拟了一个地形,当雨水落在上面时,水会根据地形的倾斜向低处流动,但只能从较高或等高的地点流向较低或等高并且相邻(上下左右方向)的地点。我们的目标是确定那些单元格,从这些单元格出发的水可以达到第一组边界和第二组边界。
输入描述
第一行包含两个整数 N 和 M,分别表示矩阵的行数和列数。
后续 N 行,每行包含 M 个整数,表示矩阵中的每个单元格的高度。
输出描述
输出共有多行,每行输出两个整数,用一个空格隔开,表示可达第一组边界和第二组边界的单元格的坐标,输出顺序任意。
题解:
1.从第一组边界向中间遍历搜索,从第二组边界向中间遍历搜索
2.求两组边界的最终重叠部分
public class Main {
// 采用 DFS 进行搜索
public static void dfs(int[][] heights, int x, int y, boolean[][] visited, int preH) {
// 遇到边界或者访问过的点,直接返回
if (x < 0 || x >= heights.length || y < 0 || y >= heights[0].length || visited[x][y]) return;
// 不满足水流入条件的直接返回
if (heights[x][y] < preH) return;
// 满足条件,设置为true,表示可以从边界到达此位置
visited[x][y] = true;
// 向下一层继续搜索
dfs(heights, x + 1, y, visited, heights[x][y]);
dfs(heights, x - 1, y, visited, heights[x][y]);
dfs(heights, x, y + 1, visited, heights[x][y]);
dfs(heights, x, y - 1, visited, heights[x][y]);
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int m = sc.nextInt();
int n = sc.nextInt();
int[][] heights = new int[m][n];
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
heights[i][j] = sc.nextInt();
}
}
// 初始化两个二位boolean数组,代表两个边界
boolean[][] pacific = new boolean[m][n];
boolean[][] atlantic = new boolean[m][n];
// 从左右边界出发进行DFS
for (int i = 0; i < m; i++) {
dfs(heights, i, 0, pacific, Integer.MIN_VALUE);
dfs(heights, i, n - 1, atlantic, Integer.MIN_VALUE);
}
// 从上下边界出发进行DFS
for (int j = 0; j < n; j++) {
dfs(heights, 0, j, pacific, Integer.MIN_VALUE);
dfs(heights, m - 1, j, atlantic, Integer.MIN_VALUE);
}
// 当两个边界二维数组在某个位置都为true时,符合题目要求
List<List<Integer>> res = new ArrayList<>();
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (pacific[i][j] && atlantic[i][j]) {
res.add(Arrays.asList(i, j));
}
}
}
// 打印结果
for (List<Integer> list : res) {
for (int k = 0; k < list.size(); k++) {
if (k == 0) {
System.out.print(list.get(k) + " ");
} else {
System.out.print(list.get(k));
}
}
System.out.println();
}
}
}
104. 建造最大岛屿
题目链接
题目描述
给定一个由 1(陆地)和 0(水)组成的矩阵,你最多可以将矩阵中的一格水变为一块陆地,在执行了此操作之后,矩阵中最大的岛屿面积是多少。
岛屿面积的计算方式为组成岛屿的陆地的总数。岛屿是被水包围,并且通过水平方向或垂直方向上相邻的陆地连接而成的。你可以假设矩阵外均被水包围。
输入描述
第一行包含两个整数 N, M,表示矩阵的行数和列数。之后 N 行,每行包含 M 个数字,数字为 1 或者 0,表示岛屿的单元格。
输出描述
输出一个整数,表示最大的岛屿面积。
题解:
1.计算每个岛屿的面积,并标记保存
2.保存岛屿相邻水变为陆地之后的面积,求面积最大值
public class Main {
// 该方法采用 DFS
// 定义全局变量
// 记录每次每个岛屿的面积
static int count;
// 对每个岛屿进行标记
static int mark;
// 定义二维数组表示四个方位
static int[][] dirs = {{0, 1}, {0, -1}, {1, 0}, {-1, 0}};
// DFS 进行搜索,将每个岛屿标记为不同的数字
public static void dfs(int[][] grid, int x, int y, boolean[][] visited) {
// 当遇到边界,直接return
if (x < 0 || x >= grid.length || y < 0 || y >= grid[0].length) return;
// 遇到已经访问过的或者遇到海水,直接返回
if (visited[x][y] || grid[x][y] == 0) return;
visited[x][y] = true;
count++;
grid[x][y] = mark;
// 继续向下层搜索
dfs(grid, x, y + 1, visited);
dfs(grid, x, y - 1, visited);
dfs(grid, x + 1, y, visited);
dfs(grid, x - 1, y, visited);
}
public static void main (String[] args) {
// 接收输入
Scanner sc = new Scanner(System.in);
int m = sc.nextInt();
int n = sc.nextInt();
int[][] grid = new int[m][n];
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
grid[i][j] = sc.nextInt();
}
}
// 初始化mark变量,从2开始(区别于0水,1岛屿)
mark = 2;
// 定义二位boolean数组记录该位置是否被访问
boolean[][] visited = new boolean[m][n];
// 定义一个HashMap,记录某片岛屿的标记号和面积
HashMap<Integer, Integer> getSize = new HashMap<>();
// 定义一个HashSet,用来判断某一位置水四周是否存在不同标记编号的岛屿
HashSet<Integer> set = new HashSet<>();
// 定义一个boolean变量,看看DFS之后,是否全是岛屿
boolean isAllIsland = true;
// 遍历二维数组进行DFS搜索,标记每片岛屿的编号,记录对应的面积
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (grid[i][j] == 0) isAllIsland = false;
if (grid[i][j] == 1) {
count = 0;
dfs(grid, i, j, visited);
getSize.put(mark, count);
mark++;
}
}
}
int result = 0;
if (isAllIsland) result = m * n;
// 对标记完的grid继续遍历,判断每个水位置四周是否有岛屿,
//并记录下四周不同相邻岛屿面积之和
// 每次计算完一个水位置周围可能存在的岛屿面积之和,更新下result变量
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (grid[i][j] == 0) {
set.clear();
// 当前水位置变更为岛屿,所以初始化为1
int curSize = 1;
for (int[] dir : dirs) {
int curRow = i + dir[0];
int curCol = j + dir[1];
if (curRow < 0 || curRow >= m || curCol < 0 || curCol >= n) continue;
int curMark = grid[curRow][curCol];
// 如果当前相邻的岛屿已经遍历过或者HashMap中不存在这个编号,继续搜索
if (set.contains(curMark) || !getSize.containsKey(curMark)) continue;
set.add(curMark);
curSize += getSize.get(curMark);
}
result = Math.max(result, curSize);
}
}
}
// 打印结果
System.out.println(result);
}
}