猪酱酱
码龄4年
关注
提问 私信
  • 博客:8,091
    8,091
    总访问量
  • 9
    原创
  • 161,970
    排名
  • 366
    粉丝
  • 0
    铁粉
  • 学习成就

个人简介:“若再许我少年时,一两黄金一两风!”

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:重庆市
  • 加入CSDN时间: 2021-04-26
博客简介:

qq_57669293的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    2
    当前总分
    114
    当月
    1
个人成就
  • 获得215次点赞
  • 内容获得5次评论
  • 获得120次收藏
创作历程
  • 9篇
    2024年
成就勋章
兴趣领域 设置
  • Python
    pythonpyqtipython
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

342人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

深度学习基础

在深度学习中,
原创
发布博客 2024.06.14 ·
1067 阅读 ·
30 点赞 ·
0 评论 ·
20 收藏

机器学习--集成学习

集成学习是机器学习中的一种思想,它通过多个模型的组合形成一个精度更高的模型,参与组合的模型成为弱学习器(基学习器)。思想:给定样本初始的权重,然后对决策树的预测结果算出错误率,错误率等于预测个数乘样本权重, 选择错误率最小的分裂点进行弱学习器的分裂或分类,通过错误率重新给样本权重赋值,预测正确的样本减小样本权重,预测错误的样本增加样本权重,然后通过错误率和样本权重给弱学习器赋予模型权重,最终的结果为每个弱学习器的预测结果乘以模型权重之和。弱分类器的性能比随机猜测强就行,即可构造出一个非常准确的强分类器。
原创
发布博客 2024.05.19 ·
1283 阅读 ·
37 点赞 ·
1 评论 ·
29 收藏

机器学习算法之——决策树

决策树是什么?决策树是一种树形结构,树中每个内部节点表示一个特征上的判断,每个分支代表一个判断结果的输出,每个叶子节点代表一种分类结果决策树的建立过程1.特征选择:选取有较强分类能力的特征。2.决策树生成:根据选择的特征生成决策树。3.决策树也易过拟合,采用剪枝的方法缓解过拟合。决策树的分类:ID3树 :基于信息增益C4.5树 :基于信息增益率cart树 :基于基尼指数。
原创
发布博客 2024.05.17 ·
439 阅读 ·
9 点赞 ·
0 评论 ·
8 收藏

逻辑回归以及分类评估方法

逻辑回归是基于线性回归的基础上的,线性回归的输出会作为逻辑回归的输入,通过sigmoid函数将输入的值转化为(0~1)之间的概率,然后设置一个阈值,大于这个阈值的概率将分成1类,小于这个阈值的就分为0类。逻辑回归概念 Logistic Regression• 一种分类模型,把线性回归的输出,作为逻辑回归的输入。• 输出是(0, 1)之间的值• 基本思想利用线性模型 f(x) = wx + b 根据特征的重要性计算出一个值再使用 sigmoid 函数将 f(x) 的输出值映射为概率值。
原创
发布博客 2024.05.12 ·
1332 阅读 ·
37 点赞 ·
1 评论 ·
15 收藏

线性回归算法总结——波士顿房价案例

线性回归(Linear regression)是利用回归方程(函数)对一个或多个自变量(特征值)和因变量(目标值)之间关系进行建模的一种分析方式。线性回归算法分类:一元线性回归(y = kx +b )、多元线性回归(y=k1x1+k2x2+k3x3+b)基础的API:LinearRegression# 1. 导入数据包# 2. 准备数据# 3. 实例化模型# 4. 预测这是最简单的API,接下来通过一个案例来深入了解线性回归。
原创
发布博客 2024.05.09 ·
1224 阅读 ·
17 点赞 ·
0 评论 ·
27 收藏

梯度下降算法的个人理解

这样一步一步的求新权重值,直到导数趋近于0的时候 这时候损失函数得到最小 于是得到了最佳的权重。然后求损失函数在初始权重点的导数 让初始权重减去这个导数与下降速率a的乘积得到新的权重值。首先设置一个初始的权重值和一个下降速率a。下降的速度由超参数a决定。
原创
发布博客 2024.05.08 ·
391 阅读 ·
12 点赞 ·
0 评论 ·
0 收藏

Knn算法简单应用-鸢尾花案例

Knn算法:k 个 nearest neighbor 的目标值决定当前数据的目标值 其中k 由自己设定。其中 分类问题就是k个目标值个数最多的那个 回归问题就是k个值的平均值。
原创
发布博客 2024.05.05 ·
288 阅读 ·
6 点赞 ·
1 评论 ·
0 收藏

Pandas—dataframe数据分析

()方法返回的是去重之后的不同值,而nunique()方法则直接返回不同值的个数,并且在len(unique())是包含空值的返回值,而nunique()是不包含空值的,但是nunique(dropna=False。dataframe没有unique()这个方法,只有nunique()这个方法,而series有unique()方法也有nunique()方法。聚合函数有:max(),min(),mean(),count(),value_count(),unique(),nunique()等等。
原创
发布博客 2024.04.23 ·
1548 阅读 ·
50 点赞 ·
1 评论 ·
21 收藏

jupyter notebook中的显示文件都是哪里来的?

jupyter notebook 文件夹
原创
发布博客 2024.04.19 ·
504 阅读 ·
17 点赞 ·
1 评论 ·
0 收藏