自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(4)
  • 收藏
  • 关注

原创 python初学,常用魔术方法以及实例(Java 思维下的类比,内容java友好)

MyList分类魔术方法用途/触发方式初始化__init__创建对象时自动调用销毁__del__对象销毁时自动调用长度相关__len__len(obj)下标访问obj[i]下标赋值删除元素del obj[i]可迭代__iter__运算符重载__add__比较__eq__字符串表示__str__print(obj)调试表示__repr__obj在控制台输出时使用普通方法任意def你可以把这个类理解为:Java 中一个实现了 List 接口、重写了toString()

2025-06-11 12:27:21 356

原创 Python 全套语法详解(适合 Java 程序员)想到哪写到哪

✅ 包含基础语法 → 面向对象 → 异常处理 → 迭代器生成器 → 装饰器 → 高阶函数 → 协程等所有关键知识。

2025-06-09 17:03:18 948 1

原创 神经网络基础,内容自学笔记记录Softmax + One-Hot + 交叉熵 分类方法详解,想到哪写哪儿,含所有公式详细推理步骤,举例说明

摘要 本文详细解析了基于Softmax、One-Hot编码和交叉熵的分类方法。首先介绍了输入输出结构(如MNIST的784维输入和10维输出),权重与偏置的作用。通过数学公式推导了线性输出z的计算过程,并重点讲解了Softmax函数如何将得分转换为概率分布,包括数值稳定技巧。 文章阐述了One-Hot编码的原理及其表示形式,并深入分析了交叉熵损失函数的定义和应用场景,强调其梯度(而非数值)在训练中的关键作用。通过具体示例展示了反向传播过程中梯度推导的步骤,包括Softmax导数计算和交叉熵损失对参数的偏导。

2025-06-05 17:39:32 706

原创 神经网络自我学习笔记附带例子

用长度等于类别数的向量表示类别对应类别位置为1,其他位置为0784个输入对应784个权重维度,输出10类对应10个输出节点,权重矩阵大小是 10×784偏置是给每个输出节点单独加一个可调节的常量值,提升模型表现力softmax将输出转成概率one-hot编码方便计算损失和梯度交叉熵衡量预测和真实差距梯度计算中,误差是预测减真实梯度乘以输入更新权重,误差直接更新偏置2.718+2.718+

2025-06-03 15:16:02 702

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除