- 博主简介
博主致力于嵌入式、Python、人工智能、C/C++领域和各种前沿技术的优质博客分享,用最优质的内容带来最舒适的阅读体验!在博客领域获得 C/C++领域优质、CSDN年度征文第一、掘金2023年人气作者、华为云享专家、支付宝开放社区优质博主等头衔。
介绍 | 加入链接 |
---|---|
个人社群 | 社群内包含各个方向的开发者,有多年开发经验的大佬,一起监督打卡的创作者,开发者、在校生、考研党、均可加入并且咱每周都会有粉丝福利放送保你有所收获,一起 加入我们 共同进步吧! |
个人社区 | 点击即可加入 【咕咕社区】 ,让我们一起共创社区内容,输出优质文章来让你的写作能力更近一步一起加油! |
⛳️ 推荐
前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。
专栏介绍
专栏名称 | 专栏介绍 |
---|---|
科技杂谈 | 本专栏主要撰写各种科技数码等的评测体验心得,带大家一起体验最前沿的科技机技术产品体验 |
C++干货基地 | 本专栏主要撰写C++干货内容和编程技巧,让大家从底层了解C++,把更多的知识由抽象到简单通俗易懂。 |
《数据结构&算法》 | 本专栏主要是注重从底层来给大家一步步剖析数据存储的奥秘,一起解密数据在存储中数据的基本存储结构! |
《docker容器精解篇》 | 全面深入解析 docker 容器,从基础到进阶,涵盖原理、操作、实践案例,助您精通 docker。 |
《linux深造日志》 | 本专栏的标题灵感是来自linux中系统产生的系统日志。而我们也可以每天输出内容不断前进,以达到精深的境地。 |
《C语言进阶篇》 | 想成为编程高手嘛?来看看《C语言进阶篇》成为编程高手的必学知识,带你一步步认识C语言最核心最底层原理。 |
写作技巧 | 写作涨粉太慢?不知道如何写博客?想成为一名优质的博主那么这篇专栏你一定要去了解 |
文章目录
引言
在Python编程中,尤其是在处理数据时,我们经常使用numpy
数组。然而,当我们尝试将numpy
数组用作字典的键或集合的元素时,就会遇到TypeError: unhashable type: 'numpy.ndarray'
。这个错误表明我们尝试将一个不可哈希的类型(如numpy.ndarray
)用作哈希表中的键。本文将探讨这个错误的原因,并给出几种可能的解决方案。
一、问题描述
1.1 报错示例
假设我们有以下代码,它尝试将numpy
数组用作字典的键:
import numpy as np
# 创建一个numpy数组
my_array = np.array([1, 2, 3])
# 尝试将numpy数组用作字典的键
my_dict = {my_array: "value"}
运行上述代码将抛出以下错误:
TypeError: unhashable type: 'numpy.ndarray'
1.2 报错分析
这个错误表明my_array
是一个numpy.ndarray
对象,而numpy.ndarray
对象是不可哈希的,因此不能用作字典的键。
1.3 解决思路
为了解决这个问题,我们需要确保我们不是在尝试将不可哈希的类型用作字典的键。我们可以将numpy
数组转换为可哈希的类型,或者使用其他方法来处理数据。
二、解决方法
2.1 方法一:转换为可哈希的类型
将numpy
数组转换为可哈希的类型,例如列表或元组,然后将其用作字典的键。
import numpy as np
# 创建一个numpy数组
my_array = np.array([1, 2, 3])
# 将numpy数组转换为列表
my_list = list(my_array)
# 将列表用作字典的键
my_dict = {my_list: "value"}
2.2 方法二:使用其他数据结构
使用其他数据结构,例如pandas
DataFrame,来处理数据,而不是直接使用numpy
数组。
import numpy as np
import pandas as pd
# 创建一个numpy数组
my_array = np.array([1, 2, 3])
# 将numpy数组转换为pandas DataFrame
my_dataframe = pd.DataFrame(my_array)
# 使用DataFrame的某个可哈希的属性作为字典的键
my_dict = {my_dataframe.columns[0]: "value"}
2.3 方法三:使用元组
如果numpy
数组是固定大小的,可以将其转换为元组,因为元组是可哈希的。
import numpy as np
# 创建一个numpy数组
my_array = np.array([1, 2, 3])
# 将numpy数组转换为元组
my_tuple = tuple(my_array)
# 将元组用作字典的键
my_dict = {my_tuple: "value"}
2.4 方法四:使用哈希函数
使用自定义的哈希函数来计算numpy
数组的哈希值,并将其用作字典的键。
import numpy as np
def array_hash(array):
return hash(tuple(map(tuple, array)))
# 创建一个numpy数组
my_array = np.array([[1, 2], [3, 4]])
# 使用哈希函数计算哈希值
my_hash = array_hash(my_array)
# 将哈希值用作字典的键
my_dict = {my_hash: "value"}
三、其他解决方法
除了上述方法,还有一些其他的解决方法可以尝试:
- 使用
hashable
函数来检查对象是否可哈希。 - 使用
functools
模块中的total_ordering
装饰器来创建可哈希的自定义对象。 - 使用
collections
模块中的namedtuple
来创建可哈希的元组。
四、总结
在本文中,我们探讨了TypeError: unhashable type: 'numpy.ndarray'
错误的可能原因,并给出了几种解决方案。如果你遇到了这个错误,可以尝试上述方法来解决问题。记住,在将对象用作字典的键之前,始终要确保对象是可哈希的。
下次遇到类似的错误时,你可以首先检查你的代码中是否正确使用了可哈希的对象,然后根据错误的原因,采取相应的解决措施。希望这些信息能帮助你快速解决遇到的任何问题!