
等了好久终于等到了V8,赶紧测测效果,放张官网的比对图

官网链接
https://github.com/ultralytics/ultralytics
再下载自己所需要的权重
https://github.com/ultralytics/assets/releases
使用pycharm打开之后,需要在命令行输入下面命令
pip install ultralytics
参数配置
打开目录下的文件夹 ultralytics->yolo->configs->default.yaml
参数可以根据自己的需求输入在命令行里(自认为没有V5简洁直观,甚至有点麻烦)

训练
在主目录下创建个myself.yaml文件,格式与V5的一样

训练命令
yolo task=detect mode=train model=yolov8n.pt data=myself.yaml batch=60 epochs=300 imgsz=640

检测
将训练好的best.pt放到主目录下(方便省事),在命令行输入
yolo task=detect mode=predict model=best.pt source="C:\Users\Desktop\1"

runs文件夹查看效果即可
评价
- 训练时好慢,有的时候还会出异常,GPU利用率上不去,希望后期能修复,别像V6,V7一样就好
- 目前推出的都是适合640的模型,在较大分辨率图片上看不出效果,等1280适配的模型出了再更新
用户分享了使用V8进行对象检测的体验,包括从下载权重到配置参数,再到训练和检测的步骤。他们指出V8的配置相对复杂,训练过程有时会遇到GPU利用率低的问题,期待后续优化。目前的模型适用于640分辨率,更大分辨率的效果待1280适配模型推出。
1209

被折叠的 条评论
为什么被折叠?



